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1  Introduction 

Fig. 1-1: Problem solution using evolutionary algorithms 
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Different main schools of evolutionary algorithms have evolved during the last 40 years: ge-
netic algorithms, mainly developed in the USA by J. H. Holland [Hol75], evolutionary strate-
gies, developed in Germany by I. Rechenberg [Rec73] and H.-P. Schwefel [Sch81] and evolu-
tionary programming [FOW66]. Each of these constitutes a different approach, however, they 
are inspired by the same principles of natural evolution. A good introductory survey can be 
found in [Fdb94a]. 

This document describes algorithms of evolutionary algorithms. In Chapter 2, p.3 a short over-
view of the structure and basic algorithms of evolutionary algorithms is given. Chapter 3, p.9 
describes selection. In Chapter 4, p.25 the different recombination algorithms are presented. 
Chapter 5, p.33 explains mutation and Chapter 6, p.39 reinsertion. 

Chapter 7, p.41 covers parallel implementations of evolutionary algorithms especially the re-
gional population model employing migration in detail. The application of multiple/different 
strategies during an optimization including competition between subpopulations is discussed in 
Chapter 8, p.47. 

Chapter 9, p.59 explains how complete optimization algorithms can be created from the differ-
ent evolutionary operators. The respective options are discussed in detail. Each of the pre-
sented optimization algorithms represents an evolutionary algorithm. 

Chapter 10, p.71 lists all the used references and a large number of other publications from the 
field of Evolutionary Algorithms. 
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2  Overview 

Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural bio-
logical evolution. Evolutionary algorithms operate on a population of potential solutions apply-
ing the principle of survival of the fittest to produce better and better approximations to a solu-
tion. At each generation, a new set of approximations is created by the process of selecting 
individuals according to their level of fitness in the problem domain an d breeding them to-
gether using operators borrowed from natural genetics. This process leads to the evolution of 
populations of individuals that are better suited to their environment than the individuals that 
they were created from, just as in natural adaptation. 

Evolutionary algorithms model natural processes, such as selection, recombination, mutation, 
migration, locality and neighborhood. Figure 2-1 shows the structure of a simple evolutionary 
algorithm. Evolutionary algorithms work on populations of individuals instead of single solu-
tions. In this way the search is performed in a parallel manner. 

Fig. 2-1: Structure of a single population evolutionary algorithm 
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At the beginning of the computation a number of individuals (the population) are randomly 
initialized. The objective function is then evaluated for these individuals. The first/initial gen-
eration is produced. 

If the optimization criteria are not met the creation of a new generation starts. Individuals are 
selected according to their fitness for the production of offspring. Parents are recombined to 
produce offspring. All offspring will be mutated with a certain probability. The fitness of the 
offspring is then computed. The offspring are inserted into the population replacing the par-
ents, producing a new generation. This cycle is performed until the optimization criteria are 
reached. 

Such a single population evolutionary algorithm is powerful and performs well on a wide vari-
ety of problems. However, better results can be obtained by introducing multiple subpopula-
tions. Every subpopulation evolves over a few generations isolated (like the single population 
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evolutionary algorithm) before one or more individuals are exchanged between the subpopula-
tion. The multi-population evolutionary algorithm models the evolution of a species in a way 
more similar to nature than the single population evolutionary algorithm. Figure 2-2 shows the 
structure of such an extended multi-population evolutionary algorithm. 

Fig. 2-2: Structure of an extended multipopulation evolutionary algorithm 
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From the above discussion, it can be seen that evolutionary algorithms differ substantially from 
more traditional search and optimization methods. The most significant differences are: 

• Evolutionary algorithms search a population of points in parallel, not just a single point. 
• Evolutionary algorithms do not require derivative information or other auxiliary knowl-

edge; only the objective function and corresponding fitness levels influence the directions 
of search. 

• Evolutionary algorithms use probabilistic transition rules, not deterministic ones. 
• Evolutionary algorithms are generally more straightforward to apply, because no restric-

tions for the definition of the objective function exist. 
• Evolutionary algorithms can provide a number of potential solutions to a given problem. 

The final choice is left to the user. (Thus, in cases where the particular problem does not 
have one individual solution, for example a family of pareto-optimal solutions, as in the 
case of multi-objective optimization and scheduling problems, then the evolutionary al-
gorithm is potentially useful for identifying these alternative solutions simultaneously.) 

The following sections list some methods and operators of the main parts of Evolutionary Al-
gorithms. A thorough explanation of the operators will be given in the following chapters. 
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2.1  Selection 

Selection determines, which individuals are chosen for mating (recombination) and how many 
offspring each selected individual produces. The first step is fitness assignment by: 

• proportional fitness assignment or 
• rank-based fitness assignment, see Section 3.1, p.9, 
• multi-objective ranking, see Section 3.2, p.12. 

The actual selection is performed in the next step. Parents are selected according to their fit-
ness by means of one of the following algorithms: 

• roulette-wheel selection, see Section 3.3, p.15, 
• stochastic universal sampling, see Section 3.4, p.16, 
• local selection, see Section 3.5, p.16, 
• truncation selection, see Section 3.6, p.18 or 
• tournament selection, see Section 3.7, p.20. 

For more info see Chapter 3, p.9. 

2.2  Recombination 

Recombination produces new individuals in combining the information contained in the parents 
(parents - mating population). Depending on the representation of the variables of the indi-
viduals the following algorithms can be applied: 

• All presentation: 
− discrete recombination, see Subsection 4.1, p.25, (known from recombination of real 

valued variables), corresponds with uniform crossover, see Subsection 4.3.2 (known 
from recombination of binary valued variables), 

• Real valued recombination, see Section 4.2, p.26: 
− intermediate recombination, see Subsection 4.2.1, 
− line recombination, see Subsection 4.2.2, 
− extended line recombination, see Subsection 4.2.3. 

• Binary valued recombination, see Section 4.3, p.29: 
− single-point / double-point /multi-point crossover, see Subsection 4.3.1, 
− uniform crossover, see Subsection 4.3.2, 
− shuffle crossover, see Subsection 4.3.3, 
− crossover with reduced surrogate, see Subsection 4.3.4. 

For the recombination of binary valued variables the name 'crossover' is established. This has 
mainly historical reasons. Genetic algorithms mostly used binary variables and the name 'cross-
over'. Both notions (recombination and crossover) are equivalent in the area of Evolutionary 
Algorithms. For consistency, throughout this study the notion 'recombination' will be used (ex-
cept when referring to specially named methods or operators). 

For more info see Chapter 4, p.25. 
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2.3  Mutation 

After recombination every offspring undergoes mutation. Offspring variables are mutated by 
small perturbations (size of the mutation step), with low probability. The representation of the 
variables determines the used algorithm. Two operators are explained: 

• mutation operator for real valued variables, see Section 5.1, p.33, 
• mutation for binary valued variables, see Section 5.2, p.35. 

For more info see Chapter 5, p.33. 

2.4  Reinsertion 

After producing offspring they must be inserted into the population. This is especially impor-
tant, if less offspring are produced than the size of the original population. Another case is, 
when not all offspring are to be used at each generation or if more offspring are generated than 
needed. By a reinsertion scheme is determined which individuals should be inserted into the 
new population and which individuals of the population will be replaced by offspring. 

The used selection algorithm determines the reinsertion scheme: 
• global reinsertion for all population based selection algorithm (roulette-wheel selection, 

stochastic universal sampling, truncation selection), 
• local reinsertion for local selection. 

For more info see Chapter 6, p.39. 

2.5  Population models - parallel implementation of evolu-
tionary algorithms 

The extended management of populations (population models) allows the definition of exten-
sions of Evolutionary Algorithms. These extensions can contribute to an increased perform-
ance of Evolutionary Algorithms. 

The following extensions can be distinguished: 
• global model, see Section 7.1, p.41, 
• local model (diffusion model, neighborhood model, fine grained model), see Section 7.2, 

p.42, 
• regional model (migration model, island model, coarse grained model), see Section 7.3, 

p.43. 

For more info see Chapter 7, p.41. 

2.6  Application of multiple/different strategies and compe-
tition between subpopulations 

Based on the regional population model the application of multiple different strategies at the 
same time is possible. This is done by applying different operators and parameters for each 
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subpopulation. For an efficient distribution of resources during an optimization competing sub-
populations are used. 

• application of multiple strategies, see Section 8.3, p.54, 
• competition between subpopulations, see Section 8.2, p.50. 

These extensions of the regional population model contribute to an increased performance of 
Evolutionary Algorithms, especially for large and complex real-world applications. 

For more info see Chapter 8, p.47. 
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3  Selection 

In selection the offspring producing individuals are chosen. The first step is fitness assignment. 
Each individual in the selection pool receives a reproduction probability depending on the own 
objective value and the objective value of all other individuals in the selection pool. This fitness 
is used for the actual selection step afterwards. 

Throughout this section some terms are used for comparing the different selection schemes. 
The definition of these terms follow [Bak87] and [BT95]. 

selective pressure 
• probability of the best individual being selected compared to the average probability of 

selection of all individuals 

bias: 
• absolute difference between an individual's normalized fitness and its expected probabil-

ity of reproduction 

spread 
• range of possible values for the number of offspring of an individual 

loss of diversity 
• proportion of individuals of a population that is not selected during the selection phase 

selection intensity 
• expected average fitness value of the population after applying a selection method to the 

normalized Gaussian distribution 

selection variance 
• expected variance of the fitness distribution of the population after applying a selection 

method to the normalized Gaussian distribution 

3.1  Rank-based fitness assignment 

In rank-based fitness assignment, the population is sorted according to the objective values. 
The fitness assigned to each individual depends only on its position in the individuals rank and 
not on the actual objective value. 

Rank-based fitness assignment overcomes the scaling problems of the proportional fitness as-
signment. (Stagnation in the case where the selective pressure is too small or premature con-
vergence where selection has caused the search to narrow down too quickly.) The reproduc-
tive range is limited, so that no individuals generate an excessive number of offspring. Ranking 
introduces a uniform scaling across the population and provides a simple and effective way of 
controlling selective pressure. 

Rank-based fitness assignment behaves in a more robust manner than proportional fitness as-
signment and, thus, is the method of choice. [BH91], [Why89] 
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3.1.1 Linear ranking 

Consider Nind the number of individuals in the population, Pos the position of an individual in 
this population (least fit individual has Pos=1, the fittest individual Pos=Nind) and SP the se-
lective pressure. The fitness value for an individual is calculated as: 

Linear ranking: 

( ) ( ) ( )
( )1

1
122

−
−

⋅−⋅+−=
Nind
Pos

SPSPPosFitneß  (3-1) 

Linear ranking allows values of selective pressure in [1.0, 2.0]. 

3.1.2 Non-linear ranking 

A new method for ranking using a non-linear distribution was introduced in [Poh95]. The use 
of non-linear ranking permits higher selective pressures than the linear ranking method. 

Non-linear ranking: 

( )
∑

=

−

−⋅
= Nind

i

i
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X

XNind
PoseßFitn

1

1

1

 (3-2) 

X is computed as the root of the polynomial: 

( ) SPXSPXXNindSP NindNind SP +⋅++⋅+⋅−= −− K210  (3-3) 

Non-linear ranking allows values of selective pressure in [1, Nind - 2]. 

3.1.3 Comparison of linear and non-linear ranking 

Figure 3-1 compares linear and non-linear ranking graphically. 

Fig. 3-1: Fitness assignment for linear and non-linear ranking 
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The probability of each individual being selected for mating depends on its fitness normalized 
by the total fitness of the population. 

Table 3-1 contains the fitness values of the individuals for various values of the selective pres-
sure assuming a population of 11 individuals and a minimization problem. 

Table 3-1: Dependency of fitness value from selective pressure 

 fitness value (parameter: selective pressure) 
 linear ranking no ranking non-linear ranking 
objective value 2.0 1.1 1.0 3.0 2.0 

1 2.0 1.10 1,0 3.00 2.00 
3 1.8 1.08 1,0 2.21 1.69 
4 1.6 1.06 1,0 1.62 1.43 
7 1.4 1.04 1,0 1.99 1.21 
8 1.2 1.02 1,0 0.88 1.03 
9 1.0 1.00 1,0 0.65 0.87 
10 0.8 0.98 1,0 0.48 0.74 
15 0.6 0.96 1,0 0.35 0.62 
20 0.4 0.94 1,0 0.26 0.53 
30 0.2 0.92 1,0 0.19 0.45 
95 0.0 0.90 1,0 0.14 0.38 

 

3.1.4 Analysis of linear ranking 

In [BT95] an analysis of linear ranking selection can be found. 

Fig. 3-2: Properties of linear ranking 

0

0,5

1

1,5

2 1,9 1,8 1,7 1,6 1,5 1,4 1,3 1,2 1,1 1

selective pressure

loss of diversity

selection intensity

selection variance

 

Selection intensity 

( ) ( )
π
1

1 ⋅−= SPSPSelIntLinRank  (3-4) 



page 12 3  Selection 

GEATbx Introduction  www.geatbx.com 

Loss of diversity 
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3.2  Multi-objective Ranking 

Where proportional and rank-based fitness assignment is concerned it is assumed that individu-
als display only one objective function value. In many real world problems, however, there are 
several criteria which have to be considered in order to evaluate the quality of an individual. 
Only on the basis of the comparison of these several criteria (thus multi-objective) can a deci-
sion be made as to the superiority of one individual over another. Then, as in single-objective 
problems, an order of individuals within the population can be established from these reciprocal 
comparisons – multi-objective ranking. After this order has been established the single-
objective ranking methods from the subsection 3.1, p.9 can be used to convert the order of the 
individuals to corresponding fitness values. 

Multi-objective fitness assignment (and with it multi-objective optimization  ) is concerned 
with the simultaneous minimization of  NObj  criteria  fr, with r = 1, ..., NObj. The values  fr  
are determined by the objective function, which in turn is dependent on the variables of the 
individuals (the decision variables). 

A straightforward example should serve as the motivation for the following considerations. 
When objects are produced, the production costs should be kept low and the objects should be 
produced quickly. Various solutions can be developed during production planning which may 
differ regarding the number and type of the machines employed, as well as regarding the num-
ber of workers. The criteria production costs f1 and production time f2, both of which are de-
termined by the objective function, serve as evaluation criteria for each solution. 

3.2.1 PARETO-ranking 

The superiority of one solution over the other can be decided by comparing 2 solutions. It can 
be carried out both generally and for as many criteria as desired, following the schema in equa-
tion 3-7. 

PARETO-ranking resp. PARETO-dominance: 

{ } { }
( )pltless thanpartially solutionsolution

ffNObjiandffNObji Lös
i

Lös
i

Lös
i

Lös
i

 - :p21 p
,,,1,,,1 2121

<<⇒
<∈∃≤∈∀ KK  (3-7) 

If solution1 is p< (partially less than) solution2, it follows that solution1 dominates solution2. In 
the example used here this means: if costs and time are less for solution1 than for solution2, it 
follows that solution1 is superior to solution2. It would even be sufficient if one of the two val-
ues was equal for both solutions (equal costs) and only the other value was lower (less time). 
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If, however, none of the solutions dominates the other both solutions are to be regarded as 
equivalent with respect to the PARETO-order. The same rank is assigned to individuals which 
do not dominate each other.  

The rank of an individual within the population (ranki) depends on the number of individuals 
(NumInddominated) dominating this individual [Fon95]: 

dominatedi NumIndRang += 1  (3-8) 

All solutions that are found during optimization and are not dominated by a different solution 
constitute the PARETO-optimal solutions (PARETO-optimal set) of this problem (PARETO-
optimality). These solutions are assigned a rank value of 1. In the case of each PARETO-
optimal solution it is not possible to improve one of the criteria without one or several of the 
other criteria deteriorating. 

3.2.2 Goal attainment or method of inequalities 

When using plain PARETO-ranking in equation 3-7 all PARETO-optimal solutions are equiva-
lent. It is possible, however, to make a further differentiation for many practical problems. As 
above, the example of object production shall be used to illustrate this. In an extreme case a 
solution could produce nothing at all. In this case, the costs would equal zero and the produc-
tion time would be infinite. No other solution could produce the objects at lower costs. Thus, 
as this solution cannot be dominated, it would belong to the PARETO-optimal solutions if 
PARETO-dominance was applied exclusively. In a second extreme case a solution could pro-
duce objects in a very short time. This would result in very high expenditure, and therefore 
very high costs. It should be obvious that both cases are not desirable although they belong to 
the non-dominated solutions which are not dominated. 

Goals  for the individual criteria can be introduced in order to preclude PARETO-optimal set 
solutions, which lie outside of the results desired by the user. A solution is only acceptable 
when the goals for the individual criteria have been reached. This procedure is also termed 
method of inequalities , MOI, or goal programming. The individual goals are predefined as 
inequalities. 

In the production example used here, this could mean that an upper limit for costs and produc-
tion time is determined. The result is not acceptable until both goals are simultaneously reached 
or fallen short of by means of a solution. 

When the goals are included in the multi-objective ranking the comparison of two solutions 
becomes somewhat more complex. The following assumptions are made: 

[ ] [ ]
[ ]NObj

Lös
NObj

LösLösLösLös
NObj

LösLösLös

GoalGoalGoalGoals

fffFfffF
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22221111

K
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=
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In the definitions the operator partially less p< from equation 3-7 is used for each of the fol-
lowing definitions. It is possible to distinguish 3 different cases. 

1. Solution1 does not fulfill any goals: 

preferred 
p

1

21
1

solution
solutionsolutionGoalsF Lös

⇒
<∧>  (3-10) 
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2. Solution1 fulfills all goals: 

( )( )
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3. Solution1 fulfills some goals: 
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PARETO-ranking using a vector of goals for the individual criteria, allows for an improved 
generation of the sequence of a number of solutions compared to plain PARETO-ranking. 

Multi-objective optimization is carried out in order to find a number of non-dominated solu-
tions, the PARETO-optimal set. A normal evolutionary algorithm, however, converges at a 
single solution. This process is termed a genetic drift. For this reason, methods must be built in, 
which achieve the maintenance or expansion of population diversity (prevention of premature 
convergence). 

3.2.3 Sharing 

On the one hand, the genetic drift can be counteracted by the application of fitness sharing). 
On the other hand, the algorithm has the effect that a greater part of the pareto-optimal solu-
tion is ascertained. The basic principle is that individuals in a particular niche must share the 
resources available amongst themselves. In this way, the more individuals are near an individ-
ual, the lower its fitness becomes. 

During application the size of the niches and the allocation of resources within each niche must 
be established. Methods for fitness sharing are suggested in [HN93], [SD94] and 
[Fon95],amongst others. 

3.2.4 Further information on multi-objective optimization 

In this subsection it was only possible to provide a short introduction to the multi-objective 
fitness assignment within the context of evolutionary algorithms. The relevant literature should 
be referred to for more specific questions regarding individual procedures: [Hor97], [Fon95], 
[ZT98], [HN93], [SD94], [Vel99]. A list of a large amount of literature on multi-objective 
optimization with evolutionary algorithms can be accessed in [Coe99]. There is a great deal of 
literature on multi-objective optimization not specific to the evolutionary algorithm. [Mie99] is 
recommended as a good starting point. 

3.2.5 Weighted sum – aggregation or scalarization of multiple objectives 

When considering different methods and component parts used for multi-objective optimiza-
tion one should not forget classic methods for the integration of several criteria (scalarization 
method, also called aggregation of objectives). 
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The weighted sum is the most well-known method. Here each criterion is assigned a weighting 
value. By means of the linear combination of all the weighted criteria a combined objective 
function value Fws is achieved: 

∑
=

⋅=
NObj

r
rrWS fWF

1

 (3-13) 

The weighted sum is especially used in cases when the varying significance of the individual 
criteria is known or can be estimated. As this is frequently the case where practical application 
is concerned, the weighted sum is often applied. 

If a multi-objective problem is solved by means of single-objective optimization, only a point 
solution is obtained. The advantage of obtaining several solutions of equal value relating to a 
target vector is lost. At this stage the user must decide whether the simple use of the weighted 
sum or the approximation of the PARETO-optimal solutions is more important for the solution 
of the problem. 

3.3  Roulette wheel selection 

The simplest selection scheme is roulette-wheel selection, also called stochastic sampling with 
replacement [Bak87]. This is a stochastic algorithm and involves the following technique: 

The individuals are mapped to contiguous segments of a line, such that each individual's seg-
ment is equal in size to its fitness. A random number is generated and the individual whose 
segment spans the random number is selected. The process is repeated until the desired number 
of individuals is obtained (called mating population). This technique is analogous to a roulette 
wheel with each slice proportional in size to the fitness, see figure 3-3. 

Table 3-2 shows the selection probability for 11 individuals, linear ranking and selective pres-
sure of 2 together with the fitness value. Individual 1 is the most fit individual and occupies the 
largest interval, whereas individual 10 as the second least fit individual has the smallest interval 
on the line (see figure 3-3). Individual 11, the least fit interval, has a fitness value of 0 and get 
no chance for reproduction 

Table  3-2: Selection probability and fitness value 

Number of individual 1 2 3 4 5 6 7 8 9 10 11 

fitness value 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 

selection probability 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0 

 

For selecting the mating population the appropriate number of uniformly distributed random 
numbers (uniform distributed between 0.0 and 1.0) is independently generated. 

sample of 6 random numbers: 
0.81, 0.32, 0.96, 0.01, 0.65, 0.42. 

Figure 3-3 shows the selection process of the individuals for the example in table 3-2 together 
with the above sample trials. 
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Fig. 3-3: Roulette-wheel selection 

0.0 1.00.18 0.620.490.34 0.820.73 0.95

individual 1 2 3 4 5 6 7 8 9 10

trial 4 trial 2 trial 6 trial 5 trial 1 trial 3

 

After selection the mating population consists of the individuals: 
1, 2, 3, 5, 6, 9. 

The roulette-wheel selection algorithm provides a zero bias but does not guarantee minimum 
spread. 

3.4  Stochastic universal sampling 

Stochastic universal sampling [Bak87] provides zero bias and minimum spread. The individuals 
are mapped to contiguous segments of a line, such that each individual's segment is equal in 
size to its fitness exactly as in roulette-wheel selection. Here equally spaced pointers are placed 
over the line as many as there are individuals to be selected. Consider NPointer the number of 
individuals to be selected, then the distance between the pointers are 1/NPointer and the posi-
tion of the first pointer is given by a randomly generated number in the range [0, 1/NPointer]. 

For 6 individuals to be selected, the distance between the pointers is 1/6=0.167. Figure 3-4 
shows the selection for the above example. 

sample of 1 random number in the range [0, 0.167]: 
0.1. 

Fig. 3-4: Stochastic universal sampling 

0.0 1.00.18 0.620.490.34 0.820.73 0.95

individual 1 2 3 4 5 6 7 8 9 10

pointer 3 pointer 4 pointer 5 pointer 6pointer 1 pointer 2

random number
 

After selection the mating population consists of the individuals: 
1, 2, 3, 4, 6, 8. 

Stochastic universal sampling ensures a selection of offspring which is closer to what is de-
served then roulette wheel selection. 

3.5  Local selection 

In local selection every individual resides inside a constrained environment called the local 
neighborhood. (In the other selection methods the whole population or subpopulation is the 
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selection pool or neighborhood.) Individuals interact only with individuals inside this region. 
The neighborhood is defined by the structure in which the population is distributed. The 
neighborhood can be seen as the group of potential mating partners. 

Local selection is part of the local population model, see Section 7.2. 

The first step is the selection of the first half of the mating population uniform at random (or 
using one of the other mentioned selection algorithms, for example, stochastic universal sam-
pling or truncation selection). Now a local neighborhood is defined for every selected individ-
ual. Inside this neighborhood the mating partner is selected (best, fitness proportional, or uni-
form at random). 

The structure of the neighborhood can be: 
• linear 

− full ring, half ring (see Figure 3-5) 
• two-dimensional 

− full cross, half cross (see Figure 3-6, left) 
− full star, half star (see Figure 3-6, right) 

• three-dimensional and more complex with any combination of the above structures. 

Fig. 3-5: Linear neighborhood: full and half ring 

half ring (dist=1)

half ring (dist=1,2,3)

full ring (dist=1,2,3) full ring (dist=1)

full ring (dist=1,2)

 

The distance between possible neighbors together with the structure determines the size of the 
neighborhood. Table 3-3 gives examples for the size of the neighborhood for the given struc-
tures and different distance values. 
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Fig. 3-6: Two-dimensional neighborhood; left: full and half cross, right: full and half star 

 
 Twodimensional neighborhood (distance=1) 

full cross half cross 

 

 
Twodimensional neighborhood (distance=1) 

full star half star 

 

Between individuals of a population an ‘isolation by distance’ exists. The smaller the neighbor-
hood, the bigger the isolation distance. However, because of overlapping neighborhoods, 
propagation of new variants takes place. This assures the exchange of information between all 
individuals. 

The size of the neighborhood determines the speed of propagation of information between the 
individuals of a population, thus deciding between rapid propagation or maintenance of a high 
diversity/variability in the population. A higher variability is often desired, thus preventing 
problems such as premature convergence to a local minimum. Similar results were drawn from 
simulations in [VBS91]. Local selection in a small neighborhood performed better than local 
selection in a bigger neighborhood. Nevertheless, the interconnection of the whole population 
must still be provided. Two-dimensional neighborhood with structure half star using a distance 
of 1 is recommended for local selection. However, if the population is bigger (>100 individu-
als) a greater distance and/or another two-dimensional neighborhood should be used. 

Tab. 3-3: Number of neighbors for local selection 

 distance 
structure of selection 1 2 

full ring 2 4 
half ring 1 2 
full cross 4 8 (12) 
half cross 2 4 (5) 
full star 8 24 
half star 3 8 

 

3.6  Truncation selection 

Compared to the previous selection methods modeling natural selection truncation selection is 
an artificial selection method. It is used by breeders for large populations/mass selection. 
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In truncation selection individuals are sorted according to their fitness. Only the best individu-
als are selected for parents. These selected parents produce uniform at random offspring. The 
parameter for truncation selection is the truncation threshold Trunc. Trunc indicates the pro-
portion of the population to be selected as parents and takes values ranging from 50%-10%. 
Individuals below the truncation threshold do not produce offspring. The term selection inten-
sity is often used in truncation selection. Table 3-4 shows the relation between both. 

Tab. 3-4: Relation between truncation threshold and selection intensity 

truncation threshold 1% 10% 20% 40% 50% 80% 

selection intensity 2.66 1.76 1.2 0.97 0.8 0.34 

 

3.6.1 Analysis of truncation selection 

In [BT95] an analysis of truncation selection can be found. The same results have been derived 
in a different way in [CK70] as well. 

Selection intensity 

( ) 2
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Loss of diversity 

( ) TruncTruncLossDivTruncation −= 1  (3-15) 

Selection variance 

( ) ( ) ( )( )cTruncationTruncationTruncation fTruncSelIntTruncSelIntTruncSelVar −⋅−= 1  (3-16) 

Fig. 3-7: Properties of truncation selection 
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3.7  Tournament selection 

In tournament selection [GD91] a number Tour of individuals is chosen randomly from the 
population and the best individual from this group is selected as parent. This process is re-
peated as often as individuals must be chosen. These selected parents produce uniform at ran-
dom offspring. The parameter for tournament selection is the tournament size Tour. Tour takes 
values ranging from 2 to Nind (number of individuals in population). Table 3-5 and figure 3-8 
show the relation between tournament size and selection intensity [BT95]. 

Tab. 3-5: Relation between tournament size and selection intensity 

tournament size 1 2 3 5 10 30 

selection intensity 0 0.56 0.85 1.15 1.53 2.04 

 

3.7.1 Analysis of tournament selection 

In [BT95] an analysis of tournament selection can be found. 

Selection intensity 

( ) ( ) ( )( )( )TourTourTourSelIntTurnier ln14.4lnln2 ⋅−⋅≈  (3-17) 
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(About 50% of the population are lost at tournament size Tour=5). 

Selection variance 

( ) ( )Tour
TourSelVarTurnier ⋅+

≈
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 (3-19) 
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Fig. 3-8: Properties of tournament selection 
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3.8  Comparison of selection schemes 

As shown in the previous sections of this chapter the selection methods behave similarly 
assuming similar selection intensity. 

3.8.1 Selection parameter and selection intensity 

Figure 3-9 shows the relation between selection intensity and the appropriate parameters of the 
selection methods (selective pressure, truncation threshold and tournament size). It should be 
stated that with tournament selection only discrete values can be assigned and linear ranking 
selection allows only a smaller range for the selection intensity. 

However, the behavior of the selection methods is different. Thus, the selection methods will 
be compared on the parameters loss of diversity (figure 3-10) and selections variance (fig-
ure 3-11) on the selection intensity. 
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Fig. 3-9: Dependence of selection parameter on selection intensity 
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3.8.2 Loss of diversity and selection intensity 

Fig. 3-10: Dependence of loss of diversity on selection intensity 
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Truncation selection leads to a much higher loss of diversity for the same selection intensity 
compared to ranking and tournament selection. Truncation selection is more likely to replace 
less fit individuals with fitter offspring, because all individuals below a certain fitness threshold 
do not have a probability to be selected. Ranking and tournament selection seem to behave 
similarly. However, ranking selection works in an area where tournament selection does not 
work because of the discrete character of tournament selection. 



3.8  Comparison of selection schemes page 23 

www.geatbx.com  GEATbx Introduction 

3.8.3 Selection variance and selection intensity 

Fig. 3-11: Dependence of selection variance on selection intensity 
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For the same selection intensity truncation selection leads to a much smaller selection variance 
than ranking or tournament selection. As can be seen clearly ranking selection behaves similar 
to tournament selection. However, again ranking selection works in an area where tournament 
selection does not work because of the discrete character of tournament selection. In [BT95] 
was proven that the fitness distribution for ranking and tournament selection for SP=2 and 
Tour=2 (SelInt=1/sqrt(pi)) is identical. 
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4  Recombination 

Recombination produces new individuals in combining the information contained in two or 
more parents (parents - mating population). This is done by combining the variable values of 
the parents. Depending on the representation of the variables different methods must be used. 

Section 4.1 describes the discrete recombination. This method can be applied to all variable 
representations. Section 4.2 explains methods for real valued variables. Methods for binary 
valued variables are described in Section 4.3. 

The methods for binary valued variables constitute special cases of the discrete recombination. 
These methods can all be applied to integer valued and real valued variables as well. 

4.1  All representations - Discrete recombination 

Discrete recombination [MSV93a] performs an exchange of variable values between the indi-
viduals. For each position the parent who contributes its variable to the offspring is chosen 
randomly with equal probability. 
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 (4-1) 

Discrete recombination generates corners of the hypercube defined by the parents. Figure 4-1 
shows the geometric effect of discrete recombination. 

Fig. 4-1: Possible positions of the offspring after discrete recombination 

parents

possible offspring
variable 2

variable 1
 

Consider the following two individuals with 3 variables each (3 dimensions), which will also be 
used to illustrate the other types of recombination for real valued variables: 

individual 1      12     25      5 
individual 2     123      4     34 
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For each variable the parent who contributes its variable to the offspring is chosen randomly 
with equal probability.: 

sample 1           2      2      1 
sample 2           1      2      1 

After recombination the new individuals are created: 
offspring 1      123      4      5 
offspring 2       12      4      5 

Discrete recombination can be used with any kind of variables (binary, integer, real or sym-
bols). 

4.2  Real valued recombination 

The recombination methods in this section can be applied for the recombination of individuals 
with real valued variables. 

4.2.1 Intermediate recombination 

Intermediate recombination [MSV93a] is a method only applicable to real variables (and not 
binary variables). Here the variable values of the offspring are chosen somewhere around and 
between the variable values of the parents. 

Offspring are produced according to the rule: 
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where a is a scaling factor chosen uniformly at random over an interval [-d, 1+d] for each 
variable anew.  

The value of the parameter d defines the size of the area for possible offspring. A value of 
d = 0 defines the area for offspring the same size as the area spanned by the parents. This 
method is called (standard) intermediate recombination. Because most variables of the off-
spring are not generated on the border of the possible area, the area for the variables shrinks 
over the generations. This shrinkage occurs just by using (standard) intermediate recombina-
tion. This effect can be prevented by using a larger value for d. A value of d = 0.25 ensures 
(statistically), that the variable area of the offspring is the same as the variable area spanned by 
the variables of the parents. See figure 4-2 for a picture of the area of the variable range of the 
offspring defined by the variables of the parents. 

Fig. 4-2: Area for variable value of offspring compared to parents in intermediate recombination 
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area of parents
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Consider the following two individuals with 3 variables each: 
individual 1      12     25      5 
individual 2     123      4     34 

The chosen a for this example are: 
sample 1         0.5    1.1   -0.1 
sample 2         0.1    0.8    0.5 

The new individuals are calculated as: 
offspring 1     67.5    1.9    2.1 
offspring 2     23.1    8.2   19.5 

Intermediate recombination is capable of producing any point within a hypercube slightly larger 
than that defined by the parents. Figure 4-3 shows the possible area of offspring after interme-
diate recombination. 

Fig. 4-3: Possible area of the offspring after intermediate recombination 
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4.2.2 Line recombination 

Line recombination [MSV93a] is similar to intermediate recombination, except that only one 
value of a for all variables is used. The same a is used for all variables: 
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For the value of d the statements given for intermediate recombination are applicable. 

Consider the following two individuals with 3 variables each: 
individual 1      12     25      5 
individual 2     123      4     34 

The chosen Alpha for this example are: 
sample 1         0.5 
sample 2         0.1 

The new individuals are calculated as: 
offspring 1     67.5   14.5   19.5 
offspring 2     23.1   22.9    7.9 
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Line recombination can generate any point on the line defined by the parents. Figure 4-4 shows 
the possible positions of the offspring after line recombination. 

Fig. 4-4: Possible positions of the offspring after line recombination 
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4.2.3 Extended line recombination 

Extended line recombination [Müh94] generates offspring on a line defined by the variable 
values of the parents. However, extended line recombination is not restricted to the line be-
tween the parents and a small area outside. The parents just define the line where possible off-
spring may be created. The size of the area for possible offspring is defined by the domain of 
the variables. 

Inside this possible area the offspring are not uniform at random distributed. The probability of 
creating offspring near the parents is high. Only with low probability offspring are created far 
away from the parents. If the fitness of the parents is available, then offspring are more often 
created in the direction from the worse to the better parent (directed extended line recombina-
tion). 

Offspring are produced according to the following rule: 
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The creation of offspring uses features similar to the mutation operator for real valued vari-
ables (see Section 5.1). The parameter a defines the relative step-size, the parameter r the 
maximum step-size and the parameter s the direction of the recombination step. 

Figure 4-5 tries to visualize the effect of extended line recombination. 

The parameter k determines the precision used for the creation of recombination steps. A lar-
ger k produces more smaller steps. For all values of k the maximum value for a is a = 1 (u = 0). 
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The minimum value of a depends on k and is a =2-k (u = 1). Typical values for the precision 
parameter k are in the area from 4 to 20. 

Fig. 4-5: Possible positions of the offspring after extended line recombination according to the positions of 

the parents and the definition area of the variables 
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A robust value for the parameter r (range of recombination step) is 10% of the domain of the 
variable. However, according to the defined domain of the variables or for special cases this 
parameter can be adjusted. By selecting a smaller value for r the creation of offspring may be 
constrained to a smaller area around the parents. 

If the parameter s (search direction) is set to -1 or +1 with equal probability an undirected re-
combination takes place. If the probability of s=+1 is higher than 0.5, a directed recombination 
takes place (offspring are created in the direction from the worse to the better parent - the first 
parent must be the better parent). 

Extended line recombination is only applicable to real variables (and not binary or integer vari-
ables). 

4.3  Binary valued recombination (crossover) 

This section describes recombination methods for individuals with binary variables. Commonly, 
these methods are called 'crossover'. Thus, the notion 'crossover' will be used to name the 
methods. 

During the recombination of binary variables only parts of the individuals are exchanged be-
tween the individuals. Depending on the number of parts, the individuals are divided before the 
exchange of variables (the number of cross points). The number of cross points distinguish the 
methods. 

4.3.1 Single-point / double point / multi-point crossover 

In single-point crossover one crossover position k∈[1,2,...,Nvar-1], Nvar: number of variables 
of an individual, is selected uniformly at random and the variables exchanged between the indi-
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viduals about this point, then two new offspring are produced. Figure 4-6 illustrates this proc-
ess. 

Consider the following two individuals with 11 binary variables each: 
individual 1     0  1  1  1  0  0  1  1  0  1  0 
individual 2     1  0  1  0  1  1  0  0  1  0  1 

The chosen crossover position is: 
crossover position            5 

After crossover the new individuals are created: 
offspring 1      0  1  1  1  0| 1  0  0  1  0  1 
offspring 2      1  0  1  0  1| 0  1  1  0  1  0 

Fig. 4-6: Single-point crossover 

parents offspring

 

In double-point crossover two crossover positions are selected uniformly at random and the 
variables exchanged between the individuals between these points. Then two new offspring are 
produced. 

Single-point and double-point crossover are special cases of the general method multi-point 
crossover. 

For multi-point crossover, m crossover positions ki∈[1,2,...,Nvar-1], i=1:m, Nvar: number of 
variables of an individual, are chosen at random with no duplicates and sorted into ascending 
order. Then, the variables between successive crossover points are exchanged between the two 
parents to produce two new offspring. The section between the first variable and the first 
crossover point is not exchanged between individuals. Figure 4-7 illustrates this process. 

Consider the following two individuals with 11 binary variables each: 
individual 1     0  1  1  1  0  0  1  1  0  1  0 
individual 2     1  0  1  0  1  1  0  0  1  0  1 

The chosen crossover positions are: 
cross pos. (m=3)     2           6          10 

After crossover the new individuals are created: 
offspring 1      0  1| 1  0  1  1| 0  1  1  1| 1 
offspring 2      1  0| 1  1  0  0| 0  0  1  0| 0 
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Fig. 4-7: Multi-point crossover 
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The idea behind multi-point, and indeed many of the variations on the crossover operator, is 
that parts of the chromosome representation that contribute most to the performance of a par-
ticular individual may not necessarily be contained in adjacent substrings [Boo87]. Further, the 
disruptive nature of multi-point crossover appears to encourage the exploration of the search 
space, rather than favouring the convergence to highly fit individuals early in the search, thus 
making the search more robust [SDJ91b]. 

4.3.2 Uniform crossover 

Single and multi-point crossover define cross points as places between loci where an individual 
can be split. Uniform crossover [Sys89] generalizes this scheme to make every locus a poten-
tial crossover point. A crossover mask, the same length as the individual structure is created at 
random and the parity of the bits in the mask indicate which parent will supply the offspring 
with which bits. This method is identical to discrete recombination, see Section 4.1. 

Consider the following two individuals with 11 binary variables each: 
individual 1     0  1  1  1  0  0  1  1  0  1  0 
individual 2     1  0  1  0  1  1  0  0  1  0  1 

For each variable the parent who contributes its variable to the offspring is chosen randomly 
with equal probability. Here, the offspring 1 is produced by taking the bit from parent 1 if the 
corresponding mask bit is 1 or the bit from parent 2 if the corresponding mask bit is 0. Off-
spring 2 is created using the inverse of the mask, usually. 

sample 1         0  1  1  0  0  0  1  1  0  1  0 
sample 2         1  0  0  1  1  1  0  0  1  0  1 

After crossover the new individuals are created: 
offspring 1      1  1  1  0  1  1  1  1  1  1  1 
offspring 2      0  0  1  1  0  0  0  0  0  0  0 

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias associated 
with the length of the binary representation used and the particular coding for a given parame-
ter set. This helps to overcome the bias in single-point crossover towards short substrings 
without requiring precise understanding of the significance of the individual bits in the indi-
viduals representation. [SDJ91a] demonstrated how uniform crossover may be parameterized 
by applying a probability to the swapping of bits. This extra parameter can be used to control 
the amount of disruption during recombination without introducing a bias towards the length 
of the representation used. 
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4.3.3 Shuffle crossover 

Shuffle crossover [CES89] is related to uniform crossover. A single crossover position (as in 
single-point crossover) is selected. But before the variables are exchanged, they are randomly 
shuffled in both parents. After recombination, the variables in the offspring are unshuffled in 
reverse. This removes positional bias as the variables are randomly reassigned each time cross-
over is performed. 

4.3.4 Crossover with reduced surrogate 

The reduced surrogate operator [Boo87] constrains crossover to always produce new indi-
viduals wherever possible. This is implemented by restricting the location of crossover points 
such that crossover points only occur where gene values differ. 
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5  Mutation 

By mutation individuals are randomly altered. These variations (mutation steps) are mostly 
small. They will be applied to the variables of the individuals with a low probability (mutation 
probability or mutation rate). Normally, offspring are mutated after being created by recombi-
nation. 

For the definition of the mutation steps and the mutation rate two approaches exist: 
• Both parameters are constant during a whole evolutionary run. Examples are methods 

for the mutation of real variables, see Section 5.1 and mutation of binary variables, see 
Section 5.2. 

• One or both parameters are adapted according to previous mutations. Examples are the 
methods for the adaptation of mutation step-sizes known from the area of evolutionary 
strategies, see Section 5.3. 

5.1  Real valued mutation 

Mutation of real variables means, that randomly created values are added to the variables with 
a low probability. Thus, the probability of mutating a variable (mutation rate) and the size of 
the changes for each mutated variable (mutation step) must be defined. 

The probability of mutating a variable is inversely proportional to the number of variables (di-
mensions). The more dimensions one individual has, the smaller is the mutation probability. 
Different papers reported results for the optimal mutation rate. [MSV93a] writes, that a muta-
tion rate of 1/n (n: number of variables of an individual) produced good results for a wide vari-
ety of test functions. That means, that per mutation only one variable per individual is 
changed/mutated. Thus, the mutation rate is independent of the size of the population. 

Similar results are reported in [Bäc93]and [Bäc96] for a binary valued representation. For un-
imodal functions a mutation rate of 1/n was the best choice. An increase in the mutation rate at 
the beginning connected with a decrease in the mutation rate to 1/n at the end gave only an 
insignificant acceleration of the search. 

The given recommendations for the mutation rate are only correct for separable functions. 
However, most real world functions are not fully separable. For these functions no recommen-
dations for the mutation rate can be given. As long as nothing else is known, a mutation rate of 
1/n is suggested as well. 

The size of the mutation step is usually difficult to choose. The optimal step-size depends on 
the problem considered and may even vary during the optimization process. It is known, that 
small steps (small mutation steps) are often successful, especially when the individual is already 
well adapted. However, larger changes (large mutation steps) can, when successful, produce 
good results much quicker. Thus, a good mutation operator should often produce small step-
sizes with a high probability and large step-sizes with a low probability. 
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In [MSV93a] and [Müh94] such an operator is proposed (mutation operator of the Breeder 
Genetic Algorithm): 
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This mutation algorithm is able to generate most points in the hyper-cube defined by the vari-
ables of the individual and range of the mutation (the range of mutation is given by the value of 
the parameter r and the domain of the variables). Most mutated individuals will be generated 
near the individual before mutation. Only some mutated individuals will be far away from the 
not mutated individual. That means, the probability of small step-sizes is greater than that of 
bigger steps. Figure 5-1 tries to give an impression of the mutation results of this mutation 
operator. 

Fig. 5-1: Effect of mutation of real variables in two dimensions 
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The parameter k (mutation precision) defines indirectly the minimal step-size possible and the 
distribution of mutation steps inside the mutation range. The smallest relative mutation step-
size is 2-k, the largest 20 = 1. Thus, the mutation steps are created inside the area [r, r·2-k] (r: 
mutation range). With a mutation precision of k = 16, the smallest mutation step possible is 
r·2-16. Thus, when the variables of an individual are so close to the optimum, a further im-
provement is not possible. This can be circumvented by decreasing the mutation range (restart 
of the evolutionary run or use of multiple strategies) 

Typical values for the parameters of the mutation operator from equation 5-1 are: 
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By changing these parameters very different search strategies can be defined. 



5.2  Binary mutation page 35 

www.geatbx.com  GEATbx Introduction 

5.2  Binary mutation 

For binary valued individuals mutation means the flipping of variable values, because every 
variable has only two states. Thus, the size of the mutation step is always 1. For every individ-
ual the variable value to change is chosen (mostly uniform at random). Table 5-1 shows an 
example of a binary mutation for an individual with 11 variables, where variable 4 is mutated. 

Tab. 5-1: Individual before and after binary mutation 

before mutation 0 1 1 1 0 0 1 1 0 1 0

⇓

after mutation 0 1 1 0 0 0 1 1 0 1 0
 

Assuming that the above individual decodes a real number in the bounds [1, 10], the effect of 
the mutation depends on the actual coding. Table 5-2 shows the different numbers of the indi-
vidual before and after mutation for binary/gray and arithmetic/logarithmic coding. 

Tab. 5-2: Result of the binary mutation 

 

scaling linear logarithmic 

coding binary gray binary gray 

     
before mutation 5.0537 4.2887 2.8211 2.3196 

     
after mutation 4.4910 3.3346 2.4428 1.8172 

 

However, there is no longer a reason to decode real variables into binary variables. Powerful 
mutation operators for real variables are available, see the operator in Section 5.1. The advan-
tages of these operators were shown in some publications (for instance [Mic94] and [Dav91]). 

5.3  Real valued mutation with adaptation of step-sizes 

For the mutation of real variables exists the possibility to learn the direction and step-size of 
successful mutations by adapting these values. These methods are a part of evolutionary 
strategies ([Sch81] and [Rec94]) and evolutionary programming ([Fdb95]). 

Extensions of these methods or new developments were published recently: 
• Adaptation of n (number of variables) step-sizes ([OGH93], [OGH94]: ES-algorithm 

with derandomized mutative step-size control using accumulated information), 
• Adaptation of n step-sizes and one direction ([HOG95]: derandomized adaptation of n 

individual step-sizes and one direction - A II), 
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• Adaptation of n step-sizes and n directions ([HOG95]: derandomized adaptation of the 
generating set - A I). 

For storing the additional mutation step-sizes and directions additional variables are added to 
every individual. The number of these additional variables depends on the number of variables 
n and the method. Each step-size corresponds to one additional variable, one direction to n 
additional variables. To store n directions n2 additional variables would be needed. 

In addition, for the adaptation of n step-sizes n generations with the calculation of multiple 
individuals each are needed. With n step-sizes and one direction (A II) this adaptation takes 2n 
generations, for n directions (A I) n2 generations. 

When looking at the additional storage space required and the time needed for adaptation it 
can be derived, that only the first two methods are useful for practical application. Only these 
methods achieve an adaptation with acceptable expenditure. The adaptation of n directions 
(A I) is currently only applicable to small problems. 

The algorithms for these mutation operators will not be described at this stage. Instead, the 
interested reader will be directed towards the publications mentioned. An example implementa-
tion is contained in [GEATbx]. Some comments important for the practical use of these opera-
tors will be given in the following paragraphs.  

The mutation operators with step-size adaptation need a different setup for the evolutionary 
algorithm parameters compared to the other algorithms. The adapting operators employ a 
small population. Each of these individuals produces a large number of offspring. Only the best 
of the offspring are reinserted into the population. All parents will be replaced. The selection 
pressure is 1, because all individuals produce the same number of offspring. No recombination 
takes place. 

Good values for the mentioned parameters are: 
• 1 (1-3) individuals per population or subpopulation, 
• 5 (3-10) offspring per individual => generation gap = 5, 
• the best offspring replace parents => reinsertion rate = 1, 
• no selection pressure => SP = 1, 
• no recombination. 

When these mutation operators were used one problem had to be solved: the initial size of the 
individual step-sizes. The original publications just give a value of 1. This value is only suitable 
for a limited number of artificial test functions and when the domain of all variables is equal. 
For practical use the individual initial step-sizes must be defined depending on the domain of 
each variable. Further, a problem-specific scaling of the initial step-sizes should be possible. To 
achieve this the parameter mutation range r can be used, similar to the real valued mutation 
operator. 

Typical values for the mutation range of the adapting mutation operators are: 

[ ]73 10,10 : rangemutation −−∈rr  (5-3) 

The mutation range determines the initialization of the step-sizes at the beginning of a run only. 
During the following step-size adaptation the step-sizes are not constrained. 
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A larger value for the mutation range produces larger initial mutation steps. The offspring are 
created far away from the parents. Thus, a rough search is performed at the beginning of a run. 
A small value for the mutation range determines a detailed search at the beginning. Between 
both extremes the best way to solve the problem at hand must be selected. If the search is too 
rough, no adaptation takes place. If the initial step sites are too small, the search takes extraor-
dinarily long and/or the search gets stuck in the next small local minimum. 

The adapting mutation operators should be especially powerful for the solution of problems 
with correlated variables. By the adaptation of step-sizes and directions the correlations be-
tween variables can be learned. Some problems (for instance the ROSENBROCK function - con-
tains a small and curve shaped valley) can be solved very effectively by adapting mutation op-
erators. 

The use of the adapting mutation operators is very difficult (or useless), when the objective 
function contains many minima (extrema) or is noisy. 
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6  Reinsertion 

Once the offspring have been produced by selection, recombination and mutation of individuals 
from the old population, the fitness of the offspring may be determined. If less offspring are 
produced than the size of the original population then to maintain the size of the original popu-
lation, the offspring have to be reinserted into the old population. Similarly, if not all offspring 
are to be used at each generation or if more offspring are generated than the size of the old 
population then a reinsertion scheme must be used to determine which individuals are to exist 
in the new population. 

The used selection method determines the reinsertion scheme: local reinsertion for local selec-
tion and global reinsertion for all other selection methods. 

6.1  Global reinsertion 

Different schemes of global reinsertion exist: 
• produce as many offspring as parents and replace all parents by the offspring (pure rein-

sertion). 
• produce less offspring than parents and replace parents uniformly at random (uniform re-

insertion). 
• produce less offspring than parents and replace the worst parents (elitist reinsertion). 
• produce more offspring than needed for reinsertion and reinsert only the best offspring 

(fitness-based reinsertion). 

Pure Reinsertion is the simplest reinsertion scheme. Every individual lives one generation only. 
This scheme is used in the simple genetic algorithm. However, it is very likely, that very good 
individuals are replaced without producing better offspring and thus, good information is lost. 

Fig. 6-1: Scheme for elitist insertion 

parents offspring

insert 3 best offspring
best individual

worst individual
new generation

 

The elitist combined with fitness-based reinsertion prevents this losing of information and is the 
recommended method. At each generation, a given number of the least fit parents is replaced 
by the same number of the most fit offspring (see figure 6-1). The fitness-based reinsertion 
scheme implements a truncation selection between offspring before inserting them into the 
population (i.e. before they can participate in the reproduction process). On the other hand, the 
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best individuals can live for many generations. However, with every generation some new indi-
viduals are inserted. It is not checked whether the parents are replaced by better or worse off-
spring. 

Because parents may be replaced by offspring with a lower fitness, the average fitness of the 
population can decrease. However, if the inserted offspring are extremely bad, they will be 
replaced with new offspring in the next generation. 

6.2  Local reinsertion 

In local selection individuals are selected in a bounded neighborhood. (see Section 3.5). The 
reinsertion of offspring takes place in exactly the same neighborhood. Thus, the locality of the 
information is preserved. 

The used neighborhood structures are the same as in local selection. The parent of an individ-
ual is the first selected parent in this neighborhood. 

For the selection of parents to be replaced and for selection of offspring to reinsert the follow-
ing schemes are possible: 

• insert every offspring and replace individuals in neighborhood uniformly at random, 
• insert every offspring and replace weakest individuals in neighborhood, 
• insert offspring fitter than weakest individual in neighborhood and replace weakest indi-

viduals in neighborhood, 
• insert offspring fitter than weakest individual in neighborhood and replace parent, 
• insert offspring fitter than weakest individual in neighborhood and replace individuals in 

neighborhood uniformly at random, 
• insert offspring fitter than parent and replace parent. 
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7  Population models - Parallel implementations 

The population models may be distinguished from each other by looking at the range of the 
selection strategies of the parents and the definition of the selection pool. Three population 
models can be defined: 

• global model, see Section 7.1:  
In the global model the selection takes place inside the whole population. That means, 
any two or more individuals may be selected together for the production of offspring. No 
restrictions exist. 

• local model, see Section 7.2:  
The local model constrains the selection of parents to a local neighborhood. 

• regional model, see Section 7.3:  
The regional model constrains the selection of parents to parts of the population isolated 
from each other, called subpopulation. Inside the subpopulation the selection is unre-
stricted (similar to the global model). 

Figure 7-1 presents the corresponding selection pool. 

Fig. 7-1: Classification of population models by range of selection (selection pool) 

Lokales ModellRegionales ModellGlobales Modell

 

7.1  Global model - worker/farmer 

The global model does not divide the population. Instead, the global model employs the inher-
ent parallelism of evolutionary algorithms (population of individuals). The global model corre-
sponds to the classical evolutionary algorithm. 

The calculations where the whole population is needed - fitness assignment and selection - are 
performed by the master. All remaining calculations which are performed for one or two indi-
viduals each can be distributed to a number of slaves. The slaves perform recombination, muta-
tion and the evaluation of the objective function separately. This is known as synchronous mas-
ter-slave-structure, see figure 7-2. 
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Fig. 7-2: Global population model (master-slave-structure) 
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The slave calculations can be done in parallel. For most problems the evaluation of the objec-
tive function is the most time consuming part. In this case, the whole evolutionary algorithm is 
calculated by the master and only the objective function evaluation is distributed to the slaves. 
A nearly linear acceleration of the calculation time may be achieved (as long as the evaluation 
time of the objective function is higher than the communication time between master and 
slaves). 

The global model is a simple way (and inherent to every evolutionary algorithm) to reduce very 
long computation times. Additionally, the distribution of objective function evaluation can be 
employed for any other population model as well. 

7.2  Local model - Diffusion model 

Fig. 7-3: Local model (diffusion evolutionary algorithm) 
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The local model (diffusion model) handles every individual separately and selects the mating 
partner in a local neighborhood by local selection, see Section 3.5. Thus, a diffusion of infor-
mation through the population takes place. During the search virtual islands, see figure 7-3 will 
evolve. 
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7.3  Regional model - Migration 

The regional model (migration model) divides the population into multiple subpopulations. 
These subpopulations evolve independently of each other for a certain number of generations 
(isolation time). After the isolation time a number of individuals is distributed between the sub-
population (migration). The number of exchanged individuals (migration rate), the selection 
method of the individuals for migration and the scheme of migration determines how much 
genetic diversity can occur in the subpopulation and the exchange of information between sub-
population. 

The parallel implementation of the regional model showed not only a speed up in computation 
time, but it also needed less objective function evaluations when compared to a single popula-
tion algorithm. So, even for a single processor computer, implementing the parallel algorithm 
in a serial manner (pseudo-parallel) delivers better results (the algorithm finds the global opti-
mum more often or with less function evaluations). 

The selection of the individuals for migration can take place: 
• uniformly at random (pick individuals for migration in a random manner), 
• fitness-based (select the best individuals for migration). 

Many possibilities exist for the structure of the migration of individuals between subpopulation. 
For example, migration may take place: 

• between all subpopulations (complete net topology - unrestricted), see figure 7-4, 
• in a ring topology, see figure 7-6, 
• in a neighbourhood topology, see figure 7-7. 

Fig. 7-4: Unrestricted migration topology (Complete net topology) 
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The most general migration strategy is that of unrestricted migration (complete net topology). 
Here, individuals may migrate from any subpopulation to another. For each subpopulation, a 
pool of potential immigrants is constructed from the other subpopulation. The individual mi-
grants are then uniformly at random determined from this pool. 

Figure 7-5 gives a detailed description of the unrestricted migration scheme for 4 subpopula-
tions with fitness-based selection. Subpopulation 2, 3 and 4 construct a pool of their best indi-
viduals (fitness-based migration). 1 individual is uniformly at random chosen from this pool and 
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replaces the worst individual in subpopulation 1. This cycle is performed for every subpopula-
tion. Thus, it is ensured that no subpopulation will receive individuals from itself. 

Fig. 7-5: Scheme for migration of individuals between subpopulation 
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The most basic migration scheme is the ring topology. Here, individuals are transferred be-
tween directionally adjacent subpopulations. For example, individuals from subpopulation 6 
migrate only to subpopulation 1 and individuals from subpopulation 1 only migrate to 
subpopulation 2. 

Fig. 7-6: Ring migration topology; left: distance 1, right: distance 1 and 2 
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A similar strategy to the ring topology is the neighbourhood migration of figure 7-7. Like the 
ring topology, migration is made only between the nearest neighbours. However, migration 
may occur in either direction between subpopulations. For each subpopulation, the possible 
immigrants are determined, according to the desired selection method, from the adjacent sub-
populations and a final selection is made from this pool of individuals (similar to figure 7-5). 
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Fig. 7-7: Neighbourhood migration topology (2-D grid) 
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Figure 7-7 shows a possible scheme for a 2-D implementation of the neighbourhood topology. 
Sometimes this structure is called a torus. 

With the multipopulation evolutionary algorithm better results were obtained for many func-
tions tested than for a single population algorithm with the same number of individuals. Similar 
results are reported in [Loh91], [MSB91], [Rud91], [SWM91], [Tan89], [VBS91], [VSB92] 
and [Can95]. 
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8  Application of different strategies 

The optimization of complex systems is a challenging task. We can only master it by combining 
powerful optimization algorithms and analysis tools. Many of the known algorithms cannot be 
adjusted to the solution of large problems We have to find new and/or extended methods 
which are even able to tackle complex problems within huge search domains. 

A promising approach for the development of these methods is the intelligent combination of 
several optimization methods by maintaining the advantageous characteristics of each method 
(hybridization). 

This often results in a rigid combination of two optimization methods. For instance, the first 
optimization algorithm would work the whole time whereas the second one would only be 
switched on from time to time to exploit its specific features. Or both methods would be ap-
plied alternately according to a fixed schedule. 

These rigid schemata lead to several disadvantages: 
• The utility of each separate method compared to each other is not evaluated during an 

optimization run and can therefore not be taken into consideration. 
• The methods are applied simultaneously without taking into account an adapted distribu-

tion of resources. 
• The methods are applied successively. 

A large number of problems can be solved successfully using these simple hybridization meth-
ods. However, confronted with the optimization of complex systems the listed disadvantages 
become noticeable. These complex systems often require the application of more than two op-
timization methods. Furthermore, the combination and chronological application of the meth-
ods constitutes a difficult question. We have to find a technique which automates the combina-
tion and interaction of several optimization algorithms, especially for real-world applications. 

For the solution of real-world applications it is often difficult to decide which of the available 
Evolutionary Algorithms are best suited and how the operators and parameters should be com-
bined. 

We present two extensions to Evolutionary Algorithms. The first one allows the combination 
of several different Evolutionary Algorithms. It is called application of different strategies. 
The second extension enables the interaction of the different strategies as well as an efficient 
distribution of the resources. It is called competing subpopulations. 

Both extensions are based on the regional population model. This population model is de-
scribed in Section 7.3, p.43. The regional population model is often referred to as migration 
model, coarse grained model, or island model. Many papers were published about this popula-
tion model. Quite a few focus on the parallel implementation. However, this population model 
is not only useful for a parallel implementation. Even when used in a serial manner the regional 
population model proves advantageous compared to a global population model (panmictic 
population). 
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The main feature of the regional population model is that parents are selected in a regionally 
separated pool. The whole population is subdivided into subpopulations which are insulated 
from each other. An exchange of information (exchange of individuals) between the 
subpopulations takes place from time to time. This process is called migration. 

Both extensions directly adapt themselves to the known structure of Evolutionary Algorithms 
(see figure 2-2, p.4). The application of different strategies is not detectable in this structure. 
It is part of the implementation of the high-level operators. For the competing subpopulations 
an extra operator competition is necessary and can directly be added to the structure. This ex-
tension is the only change made. 

8.1  Different strategies for each subpopulation 

Evolutionary Algorithms provide a large number of different operators and methods. Thus they 
can be applied broadly. The search strategies can be adapted to a wide range of problems. On 
the one hand, there are operators for parameter optimization, sequence optimization, up to the 
solution of very specific problems. On the other hand, it is possible to vary the search from a 
globally oriented search to a locally oriented search by setting appropriate parameters. Thus, 
the user is provided with an extensive toolbox. Now he need only select the appropriate meth-
ods. 

If the user is well familiar with the type of the problem the choice of a good search strategy is 
not very difficult. However, in real-world application the necessary system knowledge is sel-
dom available. Another point is that one search strategy is rarely best suited or sufficient. 
Mostly, the start of a search will have to be done with a different strategy than the end. The 
application of different strategies is an answer to this problem. 

The application of different search strategies for each subpopulation is mentioned in a few of 
the early papers about parallel evolutionary algorithms. In [Tan87] TANESE describes the use 
of different mutation and recombination probabilities for some or all subpopulations. The re-
sults of the experiments indicate that the regional population model with different parameters 
for each subpopulation was more robust than the use of identical parameters for which the best 
values are not known. 

The application of different strategies is the result of the definition of specific strategy 
parameters for every subpopulation (e.g. different mutation and recombination operators 
and/or parameters). In this way it is possible to specify a different behavior for every 
subpopulation of the Evolutionary Algorithm. To what extent the strategies differ from each 
other only depends on the application, the aims of the different strategies, as well as the 
possibilities of the optimization tool used. 

On the one hand, strategies might differ with regard to only one parameter (e.g. mutation 
range which influences the size of the mutation steps). On the other hand, completely different 
types of Evolutionary Algorithms can be used. The principle of application of different 
strategies in itself does not pose any limitations. 

The different strategies, however, do not only work concurrently. Rather, one strategy can be 
the basis for the success of another strategy. In this case the strategies support each other, i.e. 
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the simultaneous application of the different strategies leads to success. Thus, the application 
of different strategies leads to a cooperation between subpopulations. 

8.1.1 Order of Subpopulations 

It is necessary to find a measure for the evaluation of the application of different strategies 
which enables an assessment of the success of each strategy. 

The success of a subpopulation is measured by its rank within the order of subpopulations. In 
this case, a low rank is better than a high rank. This approach is analogous to the ranking dur-
ing the fitness assignment/selection process. From the rank of a subpopulation we are able to 
assess the utility of a subpopulation in comparison to the other subpopulations. 

To calculate the order of subpopulations they have to be sorted according to one criterion. 
Since a subpopulation is made up of a number of individuals its quality results from the proper-
ties of its individuals. 

The calculation of the order of subpopulations is carried out according to the following system: 
1. A number of the best individuals is selected from each subpopulation for the evaluation. 

This can either be the best individual, a number of individuals, or all individuals of the sub-
population. 

2. These individuals are ranked according to their quality (i.e. their fitness value). The evalua-
tion of the individuals is identical to the fitness assignment procedure. We suggest the use of 
linear ranking. This assigns a quality value (fitness value) to each individual compared to the 
quality of the other individuals in the population (see Section 3.1, p.9). 

3. The fitness of the individuals of each subpopulation is combined to an evaluation of the 
subpopulation (e.g. calculating the average fitness value of the individuals in a subpopula-
tion). 

4. By sorting the evaluation of the subpopulations we obtain their order. 

The order of subpopulations offers a temporary picture. The order can fluctuate considerably 
within several generations, depending on the applied operators and parameters (especially if the 
strategies are similarly successful). It is therefore of advantage for the assessment and visuali-
zation if the order of the subpopulations is filtered. In this way a position value is calculated 
from the ranking value, which constitutes a weighted average of the rank of the subpopulation 
of previous generations. 

generationgeneration

generation

rankvalueposition

valueposition

⋅+⋅

=

− 1.09.0 1

 (8-1) 

The applied parameters of the filter in equation 8-1 prevent a strong fluctuation of the position 
values. The sum of both parameters must be 1. Higher values for the first parameter lead to a 
higher damping. Similar values are used in automatic control applications for this simple filter 
type. 

The smaller the position value the greater the success of a subpopulation. If the rank of a sub-
population does not change for a long time the position value becomes equal to the rank. The 
position value is used for all following calculations and visualizations to illustrate the order of 
subpopulations. 
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8.2  Competition between subpopulations 

A logical extension of the regional population model with the application of different strategies 
is the principle of competing subpopulations. During the application of different strategies 
within the regional model the size of every subpopulation (number of individuals) remains con-
stant. Even when a strategy is not successful it still uses the same resources. 

When using competing subpopulations this fixed amount of resources is not kept up. Instead 
the size of a subpopulation is made dependent on the current success of its strategy. Successful 
subpopulations receive more resources, less successful ones have to transfer resources to other 
subpopulations. 

Every time a competition is executed between competing subpopulations the following steps 
have to be carried out: 

• calculation of the order of subpopulations (see Section Fehler! Verweisquelle konnte 
nicht gefunden werden.), 

• calculation of the division of resources, 
• execution of distribution of resources. 

By means of an appropriate algorithm the resources are efficiently redistributed as soon as 
there is a shift within the success of the subpopulations. 

So far little has been published on the application of competing subpopulations. [SVM94] in-
troduces a simple variant of competing subpopulations for strategy adaptation. Here, the order 
of subpopulations was not calculated. Instead, only the best subpopulation was determined on 
the basis of the best individual of the whole population. Only the best subpopulation received 
individuals from all other subpopulations. The competition selection took place uniform at ran-
dom. In [SVM96] this concept was extended. By introducing the resource consumption pa-
rameter it becomes possible to control the relative size of a subpopulation. This version repre-
sents the basic model of competing subpopulations. The greatest simplification concerns the 
division of resources which just depends on the overall best individual. Thus, a subpopulation 
is always unsuccessful if it does not contain the best individual of the population. This method 
prefers only one strategy, all others are neglected. Especially during the transition between 
successful strategies this can lead to an ineffective distribution of resources. 

8.2.1 Division of Resources 

For every competition between subpopulations the available resources are redistributed. This 
can be done by determining successful and less successful subpopulations, or by a weighted 
division of the resources. 

If we take a closer look at this process of the division of resources we find similarities to the 
fitness assignment of Evolutionary Algorithms (see Section 3.1, p.9). Fitness assignment means 
that every individual is assigned a reproduction probability/fitness (possible number of off-
spring) depending on its objective value compared to the objective values of the other indi-
viduals in the selection pool. The fitness of an individual is converted into resources enabling 
the individual to produce offspring. 

The properties of the fitness assignment can directly be applied to the division of resources of 
competing subpopulations. This leads to a weighted division of the resources. It is known that 
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procedures based on the ranking of individuals are most robust. The (filtered) position value, 
see equation 8-1, serves as the basis for the division of resources. 

In the next step every subpopulation is assigned a part of the available resources according to 
its rank/position value. Linear and non-linear ranking are well-known methods from the field of 
fitness assignment. The parameter of these methods is the selection pressure. In analogy we 
define the division pressure DP. This parameter determines how the resources are distributed. 
For a low division pressure the differences in the resources of every subpopulation are small. 
When applying a high division pressure, especially for non-linear ranking, the best subpopula-
tion obtains a much larger share of resources. For the other subpopulations the share of re-
sources is clearly smaller. Nevertheless, the other good subpopulations receive a larger share of 
resources than the less good subpopulations. 

Fig. 8-1. Division of resources for subpopulations: linear and non-linear ranking and different values of 
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Figure 8-1 shows the division of resources of eight subpopulations for different values of the 
division pressure. A minimum of resources (subpopulation minimum, here 1%) needed for the 
survival of every subpopulation is taken into account. 

When applying linear ranking a maximum division pressure of only 2 is possible. If the best 
subpopulation(s) is to be given stronger preference we have to use non-linear ranking. In this 
way values of division pressure up to NumberofSubpopulations-2 can be applied. 

8.2.2 Distribution of Resources 

The following parameters/methods have to be defined in order to execute the distribution of 
resources: 

• resource consumption by the individuals, 
• competition interval: frequency of a competition for resources, 
• competition rate: maximum share of resources which has to be transferred by less suc-

cessful subpopulations, 
• competition selection: type of selection of resources to be transferred, 
• subpopulation minimum: minimum size of an unsuccessful subpopulation. 
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However, all these parameters can be set with default values for nearly all applications. Only 
for very special problems different parameter values should be defined. Thus, the use of com-
peting subpopulations imposes no additional parameters for the standard user. 

8.2.3 Resource Consumption 

So far we have only mentioned resources. However, what is missing is the conversion to the 
number of individuals used by the Evolutionary Algorithm. The resource consumption indi-
cates how many resources are needed per individual. 

The simplest variant is that every resource unit corresponds to one individual. This assumes 
that the individuals of all strategies consume the same amount of resources. 

However, it is more realistic for individuals of different strategies to differ in their consumption 
of resources. This assumption permits a better modeling of the competition between subpopu-
lations/strategies. 

For instance, three different strategies with the same amount of resource units can provide for 
a varying number of individuals depending on the resource consumption parameter. The fol-
lowing example assumes 10 resource units for every strategy: 

• resource consumption = 1:  10 individuals, 
• resource consumption = 5:  2 individuals, 
• resource consumption = 0.1: 100 individuals. 

The parameter of resource consumption determines inverse proportionally to what extent a 
subpopulation will grow when assigned additional resources. At the same time the resource 
consumption controls whether a strategy will work with a small number of individuals (high 
consumption of resources), or with a large number of individuals (low consumption of re-
sources). 

8.2.4 Competition Interval and Competition Rate 

The competition interval defines the points in time for a competition between subpopulations. 
It also indicates the span of time between competitions in which the subpopulations exist with-
out any change of available resources and it permits the subpopulations to develop for the next 
competition. 

It is easiest to specify a defined number of generations as competition interval. However, it is 
also possible to define the time of the competition depending on other events. One possibility is 
to carry out a competition every time a subpopulation has made a clear progress (we are aware 
that the definition of a “clear progress” is difficult and problem-specific). 

The maximum amount of resources transferred by one subpopulation during a competition is 
determined by the competition rate. The competition rate is specified proportionally to the cur-
rent resources of the subpopulation (and not as a fixed value). This ensures that subpopulations 
with few resources transfer a smaller amount of resources than subpopulations with many re-
sources. The competition rate should always involve only a part of the resources of a subpopu-
lation. 
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Following is a list of reference values for the competition interval (depending on the average or 
initial number of individuals per subpopulation) and the competition rate which proved to be 
suitable as predefined values. 

[ ]
( )sgeneration 204%50%10

sgeneration%20
−⇒−

⋅ opNumIndSubP
=intervalncompetitio

 (8-2) 

[ ]
( )ionsubpopulat of resources of %20%5

ionsubpopulat of resources%10
−

=ratencompetitio
 (8-3) 

If the competition interval has a very small value (< 6 generations) the competition rate should 
also be very small. This avoids a too rapid redistribution of resources between subpopulations. 
If a higher competition rate (> 10%) is used, a higher competition interval should be selected. 

8.2.5 Competition Selection 

The competition selection indicates how individuals are selected which are removed from less 
successful subpopulations. 

There are several ways to select the individuals: 
• the worst individuals, 
• uniform at random selected individuals, and 
• the best individuals. 

A point in favor for selecting the worst individuals is that unsuccessful subpopulations would 
not be further weakened during a competition. Consequently, selecting the best individuals 
means that unsuccessful subpopulations would be further punished than just by the decrease in 
the number of individuals. The random selection of individuals is in-between the other two 
options. The selection of the best or worst individuals can be executed by means of one of the 
known selection methods of Evolutionary Algorithms (see Chapter 3, p.9). 

8.2.6 Subpopulation Minimum 

To avoid the complete disappearance of less successful subpopulations it is necessary to spec-
ify a minimum subpopulation size and/or a minimum amount of resources retained by the sub-
populations. Resources can only be removed until this minimum is reached. Afterwards its size 
remains constant (until a possible success of the subpopulation). 

The subpopulation minimum can be expressed by: 
• a fixed amount of individuals, 
• a proportion of the average resources/size of the subpopulation, or 
• a proportion of all available resources 

A better comparison between different-sized subpopulations is possible when the subpopula-
tion minimum is specified proportionally to the subpopulation size rather than stating a fixed 
amount of individuals/resources. On the other hand, it is often known what minimum size a 
subpopulation needs in order to work. The most flexible option is the definition as proportion 
of the overall available resources. 
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The successful application of most Evolutionary Algorithms can hardly be guaranteed if the 
subpopulation minimum is set to a very low value (4-6 individuals). A success of such a small 
subpopulation is only achievable if its strategy is superior to the strategies of the other sub-
populations. 

8.3  Application of Different Strategies 

This chapter illustrates the application of the introduced extensions using a simple and easily 
comprehensible objective function. 

Figure 8-2 shows an example of the course and the results of an optimization of DEJONG's 
Function 1 (hyper sphere with 10 dimensions) using the application of different strategies. The 
optimization was executed with 5 subpopulations, with 15 individuals each. Each subpopula-
tion used a different strategy (different parameters of the real-valued mutation operator): 1: 
large mutation steps; 2: middle-sized mutation steps; 3: small mutation steps; 4: tiny mutation 
steps; 5: middle-sized and small mutation steps (mutation range: 1e-2, 1e-4, 1e-6, 1e-8, 2e-1; 
mutation precision: 6, 6, 6, 6, 16). The smaller the mutation steps the more locally oriented the 
search. All strategies used the same recombination operator (discrete recombination), all other 
parameters were identical too (e.g. generation gap: 0,9). Every 40 generations a migration 
between subpopulations took place (complete net structure). See Section 7.3, p.43 for an ex-
tensive discussion of these operators. 

Fig. 8-2. Application of different strategies, order of subpopulations; left: beginning of optimization run, 

middle: middle phase, right: final phase 

 

The left diagram in figure 8-2 shows the beginning of the optimization. We can see that strat-
egy 5 is the most successful one at the beginning. This changes after 200 generations. Now 
strategy 2 becomes better, taking up the leading position after 220 generations (see middle 
diagram). Strategy 3 becomes the best one after 300 generations, followed by strategy 4 after 
500 generations (see right diagram). Strategy 1 shows a good behavior during the first 50 gen-
erations (see left diagram), however it then falls behind and will not be able to be successful at 
any time. 
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This is not surprising if one knows the properties of the example function. Large mutation 
steps are especially successful at the beginning. Later they only lead to deterioration. Similarly 
this applies to each of the strategies 2-4. If larger steps still make progress, small steps are too 
slow. Thus, each of the first four strategies is best during a specific period. 

Strategy 5 takes up a special position. The left diagram shows clearly that strategy 5 is the 
most successful one at the beginning: larger steps now and then, and mostly smaller steps is a 
good strategy. After 200 generations strategy 5 runs out of breath. It rarely produces good 
individuals anymore. Now one of the more specialized strategies is advantageous. 

8.4  Application of Competing Subpopulations 

The following example demonstrates the application of competing subpopulation. It uses the 
same objective function and the same strategies as the example above with the addition of 
competition between subpopulations. 

The competition parameters were set as follows: 
• only the best subpopulation receives resources, 
• the resource consumption for each individual is 1, 
• the competition interval is 4 generations, 
• the worst individuals are removed from less successful subpopulations, 
• the subpopulation minimum is set to 5 individuals. 

The example presents a powerful but still comprehensible variant of competing subpopulations. 
Figure 8-3 shows selected sections of the course and the results of the optimization run. 

The left and middle diagram in figure 8-3 show the course of the competition between the sub-
populations clearly. The left diagram displays the absolute size of the single subpopulations, 
and the middle one their relative size using a stacked line plot. The number of individuals in the 
middle diagram results from the distance between two contiguous lines, i.e. the size of each 
subpopulation can be identified without a legend. 

Fig. 8-3. Competing subpopulations; left: size of subpopulations, middle: relative size of subpopulations, 

right: objective values of all individuals at the beginning of the optimization run 

 

The example presents a powerful but still comprehensible variant of competing subpopulations. 
Figure 8-3 shows selected sections of the course and the results of the optimization run. 

The left and middle diagram in figure 8-3 show the course of the competition between the sub-
populations clearly. The left diagram displays the absolute size of the single subpopulations, 
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and the middle one their relative size using a stacked line plot. The number of individuals in the 
middle diagram results from the distance between two contiguous lines, i.e. the size of each 
subpopulation can be identified without a legend. 

At the beginning of the optimization run the size of subpopulation 1 (large mutation steps) 
increases for a short time. After about 50 generations subpopulation 5 grows (large and mid-
dle-sized mutation steps). Subpopulation 2 is only successful after 320 generations (middle-
sized mutation steps). Subpopulation 3 obtains more individuals after 400 generations (small 
mutation steps). For about the last 200 generations subpopulation 4 (tiny mutation steps) is the 
most successful one, having the most individuals. At all times the less successful subpopula-
tions/strategies use only a small proportion of the overall population. 

An additional insight into the course of the optimization is given by the right diagram in fig-
ure 8-3. It shows the objective values of all individuals over several generations (the individuals 
with the lowest index numbers form subpopulation 1, the individuals with the highest index 
numbers subpopulation 5, the other subpopulations are in-between). The division between the 
subpopulations is clearly visible and enables the user to indirectly recognize the size of every 
subpopulation. The diagram shows the beginning of the run where subpopulation 1 was suc-
cessful and increased in size. The reason for this can also be seen: the greatest improvement of 
the objective values takes place in subpopulation 1. Subpopulations 2, 3, and 4, however, do 
not show much of an improvement. Only subpopulation 5 demonstrates a clear progress during 
the first 40 generations. The migration in generation 40 distributes the best individuals of the 
subpopulations. Thus, the less successful subpopulations are improved towards the level of 
quality of the best subpopulation. For further diagrams depicting the transitions between suc-
cessful strategies please refer to [Poh99b], Section 4.6. 

8.5  Conclusion 

The application of different strategies permits the simultaneous application of different pa-
rameter settings. This accelerates and facilitates an optimization in contrast to the execution of 
multiple independent experiments. Results are presented more clearly and in a compact man-
ner. It is very easy to identify successful and unsuccessful strategies as well as the varying suc-
cess of strategies during an optimization run. Furthermore, the cooperation between strategies 
during a run can lead to their achieving better results than separated strategies. The success of 
a strategy at the beginning of a run often is the basis for the subsequent success of another 
strategy. 

The application of different strategies and competing subpopulations serves multiple aims at 
the same time: 

• During the initial evaluation of the systems to optimize we could easily test a number of 
parameter settings to determine promising strategies for the respective problem class. 
Simultaneously we excluded unsuccessful strategies (competition between strategies). 

• During the productive search of the optimization all promising strategies were used at 
the same time. This is particularly important. We could use one configuration for a large 
class of optimization systems. The user of the test tool need not bother with the configu-
ration of the optimization engine. Nevertheless, the optimization algorithm is still power-
ful. 
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• Not all of the applied strategies are successful for each single optimization run. However, 
the division of resources ensured only a small amount of resources being used for cur-
rently not successful strategies. 

• Very often more than one of the applied strategies is successful during an optimization 
run. Each of these strategies is particularly successful at a specific point in time. 

The use of different strategies enables a higher level of the application of Evolutionary Algo-
rithms, especially within the following two areas: 

• testing a number of parameter settings to determine successful strategies and simultane-
ously exclude unsuccessful ones (competition between strategies), 

• the simultaneous application of different strategies where each strategy is particularly 
successful at a specific point in time, i.e. the strategies supplement each other (coopera-
tion between strategies). 

The extension competing subpopulations is based on the application of different strategies, 
however, it goes one step further. The different strategies are not only applied simultaneously 
but the successful ones receive more resources than the less successful ones. This leads to a 
dynamic distribution of resources. 

The resource distribution leads to an indirect adaptation of the strategy parameters during an 
optimization run. This means the user does not have to specify the parameters beforehand be-
cause they are indirectly set depending on the success of the subpopulations. This opens up 
new dimensions to the application of Evolutionary Algorithms.  

By applying competing subpopulations those strategies less suitable for solving the problem 
will receive less resources. Thus, only a small amount of resources are used for testing unsuc-
cessful strategies which in turn enables the testing of additional promising strategies for very 
complex problems. 

The approach presented in this chapter eliminates restrictions of earlier publication ([SVM94], 
[SVM96]). The inclusion of the best, multiple, or all individuals of the subpopulations enables 
the calculation of a weighted order of the subpopulations. This leads to a multilevel assessment 
of the success of the strategies/subpopulations. The weighted division of resources permits a 
distribution to all subpopulations and not only to the best subpopulation. Especially when em-
ploying similar or supplementary strategies this leads to a more equitable division of the avail-
able resources. 

The presented extensions of Evolutionary Algorithms, application of different strategies and 
competing subpopulations, are very powerful, especially in real-world applications. These ex-
tensions are an integral part of the GEATbx. The extensions allow the setup of powerful opti-
mization algorithms applicable to a large class of real-world problems. 

Both extensions constitute another step towards the development of powerful Evolutionary 
Algorithms for the solution of large and complex systems. 
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9  Combination of Operators and Options to 
Produce Evolutionary Algorithms 

In the preceding chapters individual methods and operators were described. In this chapter I 
shall explain how complete optimization algorithms can be created from these operators. Each 
of these optimization algorithms represents an evolutionary algorithm. 

As there is a large number of problem classes, and as a different optimization procedure is best 
suited to each problem class, I would like to make some recommendations here which often 
hold good. These recommendations are based both on my experience with the optimization of 
various problems, as well as on other authors’ results taken from the relevant literature. 

By using this approach the user is provided with insights into the specific properties of the 
operators and the dependencies between the operators. The user can better understand how the 
interplay of these properties and dependencies defines an optimization algorithm with certain 
properties. Based on this, is it easier to adapt the proposed algorithms to new problem areas. 
Moreover, it can be better estimated why an algorithm has difficulties or fails when faced with 
a particular problem. 

Besides the choice of an optimization algorithm (combination of operators), the behavior of the 
optimization algorithms can be controlled via a number of options (also termed parameters). 
Since a lot of the options of an optimization algorithm cannot be determined exactly, in most 
cases a range for their values or a dependency of these values on other factors are specified. 
This renders the optimization algorithm more adaptable to different problem sizes and makes it 
easier to recognise which mutual dependencies have to be considered. 

In the case of some procedures and operators, the options can be stated relatively independ-
ently of the problem which has to be solved. These procedures and the corresponding options 
will be explained and described in section 9.1, p.60. 

For application to specific problem classes, specific operators and their options will be pre-
sented in section 9.2-9.5. 

The specific problem classes can be divided into the following groups and variants: 
• Parameter optimization (e.g. parameter identification) with further differentiation accord-

ing to the representation of the variables: 
− globally oriented parameter optimization  of real or integer variables, section 9.2, 

p.62, 
− locally oriented parameter optimization  real variables, section 9.3, p.63, 
− parameter optimization binary variables, section 9.4, p.65, 

• combinatorial optimization, section 9.5, p.65, e.g.: 
− travelling sales person TSP, 
− production scheduling (e.g. job shop scheduling JSS, vehicle routing problems VRP). 
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When describing optimization algorithms for the specific problem classes, I shall illustrate only 
the particular operators together with their options. In every other case the procedures de-
scribed in section 9.1, p.60, together with their options, will be applied. 

The values suggested in this chapter for the individual parameters/options can, of course, be 
changed. The user should, however, then know what effect these changes have and whether 
they necessitate changes to other parameters. This is usually only possible after a relatively 
long period of practice with and examination of the way the individual operators work as well 
as the function and combined effects of the parameters. 

For a more detailed explanation of the significance of the individual operators and their pa-
rameters refer to chapter 2, p.3 and chapter 7, p.41. 

9.1  Generally Adjustable Operators and Options 

This section describes procedures and operators for which the options can be adjusted rela-
tively independently of the problem which has to be solved. With these adjustments a robust 
working is provided for many problems which have to be solved. 

9.1.1 Operators and Options for Fitness Assignment and Selection 

As explained in section 3.1, p.9, a rank based procedure (ranking) should always be employed 
for fitness assignment . All of the procedures presented in sections 3.3-3.7 can then be applied 
for selection . The selection procedure used is less decisive than the value of the corresponding 
option – the selection pressure. A comparison of the procedures and an examination of their 
differences was made in section 3.8, p.21. 

Using selection pressure values in the area of 1.5 to 2 worked well in many cases. A higher 
selection pressure should only be applied in the case of very large populations (over 500 indi-
viduals). 

The generation gap option has a greater influence on the course which the optimization takes. 
This option states how many offspring will be produced in comparison to the number of indi-
viduals in the population. A generation gap of less than 1 ensures that less offspring are pro-
duced than there are individuals in the population. As a result, some of the parents survive into 
the next generation, in this case the best individuals so far. This conforms to an elitist strategy . 
With a generation gap of exactly 1, exactly as many offspring as parents are produced and the 
offspring replace all the parents. A generation gap of a little less than 1 (0.8–0.99) ensures that 
very good solutions which have been found are only replaced by even better solutions. 

9.1.2 Operators and Options for Application of Different Strategies and Com-
petition between Subpopulations 

Where, in the following, several procedures or variants of operators are described for a prob-
lem class, these can be applied together during an optimization run. This takes place via the 
application of different strategies as described in section 8.1, p.48. This application of different 
strategies allows the simultaneous deployment of various strategies. In this way, one can inves-
tigate which of these strategies is successful for the problem to be solved. It is then sufficient, 
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during subsequent optimisation, to limit oneself to the deployment of these successful strate-
gies. 

The simultaneous application of several mutation operators or letting these work with different 
parameters is an example of this. As a result, various search strategies are applied simultane-
ously. This often leads to better results. For example, three subpopulations can be used, whose 
parameters only differ in the mutation range  (large, medium, small) – see section 5.1, p.33. In 
this way a rough, a medium and a fine search are carried out simultaneously. The rough search 
is usually successful at the beginning of a run and the fine search at the end. 

Due to the additional deployment of competition between the subpopulations, section 8.2, 
p.50, a simultaneous and efficient distribution of the computational resources between the 
strategies, in favour of successful strategies, is achieved. This is then particularly noticeable if 
different strategies are successful at different times during an optimisation run. The strategies 
which are most successful at the respective times are allocated more resources and can, as a 
consequence, step up their search for better solutions. As soon as another strategy, and thus 
another subpopulation, becomes more successful, it is allocated more resources (in this case 
more individuals) and is able to carry out its search more effectively. 

Both of these concepts, application of different strategies and the extension to competition 
between strategies, can be applied universally. They prove particularly useful when searching 
for suitable procedures and operators for the solution of new systems whose behaviour is not 
yet so well known. By applying these concepts, particularly in the initial phase of work on a 
system, better results are achieved more quickly than when different strategies are tried out 
consecutively. Moreover, it is quite possible that one single strategy is not successful, whereas 
strategies being run together are successful within a relatively short space of time. 

9.1.3 Operators and Options for Regional Population Model (Migration be-
tween Subpopulations) 

Both methods (application of different strategies and the extension to competition between 
strategies) are based on the subdivision of the population into subpopulations, the regional 
population model (see section 7.3, p.43). The development in the subpopulations takes place 
separately for a certain isolation period. From time to time an exchange of (good) individuals is 
made between the subpopulations. In this way, information found in one subpopulation also 
reaches the other subpopulations. 

When applying the regional model, one usually works with a migration time of 20 (up to 40) 
generations, independently of how long a run actually needs in order to achieve results. If more 
than 1000 generations are being worked with, the migration time can be raised to every 50 
generations, for short runs of around 50 generations a migration time of 5-10 generations is 
better. The migration rate (proportion of the population to be exchanged) is usually set at 
10%, the migration structure at unlimited (exchange between all subpopulations – complete 
net). More detailed information on the parameters is provided in section 7.3, p.43. 
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9.1.4 Summary of generally adjustable operators and options 

The explanations in this section were able to show that many options of an evolutionary algo-
rithm can be adjusted to very sensible and robust values, without having to be readapted to 
every problem. 

At this point I would like to provide a short summary of the procedures explained so far and of 
a robust parameterisation: 

• Fitness assignment and selection:  
Fitness assignment via linear ranking with selection pressure of 1.5-2, generation gap of 
0.95, stochastic universal sampling as the selection procedure, 

• Migration: (in the case of several subpopulations, regional population model)  
Migration time of 20 generations, migration rate of 10%, migration structure: complete 
net, 

• Application of different strategies:  
Definition of different procedures or options for the individual subpopulations (e.g. dif-
ferent mutation ranges), 

• Competition between subpopulations:  
Competition interval of 4-10 generations, competition rate of 10%, subpopulation mini-
mum at 10%-20% of the initial size of the subpopulation. 

This covers the generally applicable explanations and comments. The information in the fol-
lowing sections is related to specific problem categories. 

9.2  Globally Oriented Parameter Optimization 

A large part of the technical application problems concerns parameter optimization problems 
with real and integer variables, for which there is usually no (strong) correlation between the 
variables present. In this section I shall present those evolutionary algorithms which are espe-
cially suited to the globally oriented optimization of these problems. Here a globally oriented 
search is defined as one in which no assumptions are made as to the type of the target function 
and the search is mainly carried out along the co-ordinate axes. Each variable is changed sepa-
rately. 

9.2.1 Recombination 

Almost all recombination operators can be used (including those for binary variables).Discrete 
recombination (recdis) is the most favourable and (less often) line recombination (reclin).  

For integer variables line recombination and intermediate recombination (recint) can only be 
used to a limited extent. 

The recombination rate should, as a rule, be set at 1. 

9.2.2 Mutation 

The mutation operators available for real (mutreal) and integer variables (mutint), sec-
tion 5.1, p.33, can exhibit very different behaviour as a result of appropriate parameterization. 
For this reason, there is only one operator per variable type, whereby both work (almost) iden-
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tically. An adaptation to the application case (rough mutation up to fine mutation) is achieved 
by the continuous adjustment of the corresponding options (and thus also the corresponding 
search strategy). 

For a rough mutation, a mutation range of 0.2-0.05 is used, for a fine search down to values of 
10-8 and lower. The mutation range defines the value of the largest mutation step in relation to 
the definition range of the respective variable/parameter. 

A mutation precision of 16 (range of 8-20) achieves a sensible distribution of the mutation 
steps (mostly small mutation steps, large steps only occasionally). 

A possible parameterization of the mutation for real variables using 4 different strategies could 
involve mutation ranges of [0.1, 0.03, 0.001, 0.0003], all with a mutation precision of 10. 
Thus, a rough screening of the search area is connected with a fine search. This is an approach 
which has proved itself in many practical applications. 

The mutation rate should be set at (1/number of variables) and should only be increased in ex-
ceptions or in the case of selection pressure larger than 2. 

The parameterisation of the mutation operator usually has the greatest influence on the 
effectiveness and thus the course of the optimisation. For this reason, the search for an 
effective algorithm for the solution of the current problem should be concentrated on this 
operator. By using different mutation ranges in the individual subpopulations (and thus the 
application of different strategies), an adjustment to the problem can be carried out quickly. 

The high-level toolbox functions for globally oriented parameter optimization are tbx3real 
(real-valued representation) and tbx3int (integer-valued representation). 

9.3  Locally Oriented Parameter Optimization 

 In this section I shall present those evolutionary algorithms which are particularly suited to the 
locally oriented optimisation of real variables. This comprises, generally speaking, application 
problems for which there is a strong correlation between the (real) variables. Due to this, the 
variables have to be changed simultaneously (co-ordinated) and it must be possible to search in 
all directions within the search area. 

To this end, those search directions which are most likely to be successful have to be 
“learned”. Special mutation operators, originating from the evolution strategies area, sec-
tion 5.3, p.35, are available for such problems. These attempt to learn the direction of an im-
provement and thus render a goal-oriented search possible. 

However, the application of these operators is limited to smooth functions and low-
dimensional problems (the larger the problem is, the longer the learning of a direction takes). If 
a target function is noisy, it is highly likely that these evolutionary algorithms will get stuck in 
the next local minima. In exactly the same way, the algorithms have almost no chance of get-
ting out of a local minima again. This makes them unsuitable for multi-modal problems. For 
more detailed information on the application of these strategies refer to [Ost97] and [Han98]. 

9.3.1 Recombination 

These procedures (usually) do not involve recombination. 
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9.3.2 Mutation 

Special mutation operators are available (mutes1, mutes2) which originate from the evolu-
tion strategies area, section 5.3, p.35. Only the size of the initial step is specified for these op-
erators. Subsequently these functions carry out an independent adaptation of the step sizes or 
of the search direction. 

The mutation range is no more than a specification for the range of the initial step size. Values 
of 10-3 to 10-7 (related to the definition range of the individual variables, as this is implemented 
in the GEATbx) have worked well. The determination of a sensible initial step size is problem-
specific and cannot be done easily. 

It is also possible to work with different strategies when using these operators. These would 
differ in the mutation range (e.g. large, medium, small). Each of the strategies (subpopulations) 
therefore starts with a different initial step size range. However, as soon as the adaptation of 
the step sizes has taken place, the different mutation ranges no longer have any influence. This, 
consequently, only conduces to the determination of sensible or successful initial step sizes. 

9.3.3 Fitness Assignment and Selection 

It should be noted that these procedures for locally oriented optimization only work with a 
small number of individuals and that a lot of offspring are produced, of which only the best are 
added to the population. 

In order to achieve this we have a choice of two possibilities. On the one hand, the population 
can contain few individuals which each produce a lot of offspring. Only the best of these off-
spring replace the parents and form the new population. For this, the following parameters for 
population size and selection should be used: 

• population size: 1-5 individuals, 
• generation gap: 3-10 (number of offspring per parent), 
• selection pressure: 1 (no selection pressure). 

On the other hand, one works with a larger population size, in which only the very best 
individuals produce offspring. Here, (almost) all offspring replace the parents and form the new 
population: 

• population size: 5-20 individuals, 
• generation gap: 1 (produce as many offspring as parents), 
• selection: truncation selection with a selection pressure of 3-10 (only the very best indi-

viduals are selected and each produce several offspring). 

The first variant is based on the original “definition” of these procedures and has its complete 
justification. In the case of the second variant, however, there are some small advantages, 
which have particularly come to the fore during practical application. Firstly, all individuals 
produced (offspring) can be integrated in the (later) evaluation as they are included in the 
population for at least one generation (in the case of the first variant only a small part of the 
offspring produced are included in the population). Furthermore, in the case of the second 
variant, an elitist selection can be defined very easily, by which the hitherto best individual sur-
vives in the population. For this one simply has to define a generation gap of somewhat less 
than 1 (e.g. 0.99). 

The high-level toolbox function for locally oriented parameter optimization is tbx3es1. 
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9.4  Parameter Optimization of Binary Variables 

The parameter optimisation of binary variables is applied, above all, for classic genetic algo-
rithms. Here, the real or integer variables are transformed into a larger number of binary vari-
ables via discretization. The genetic algorithm then works on these binary variables. Before the 
objective function is calculated, the binary variables have to be decoded into their original for-
mat. 

As these genetic algorithms are still in use, a number of corresponding operators are available. 
Moreover, there are some real-world problems which use binary variables directly. 

9.4.1 Recombination 

All recombination operators for binary variables can be used. Discrete recombination 
(recdis), which is identical to uniform crossover, and the operators with reduced surrogate 
(recsprs, recdprs, recshrs,) are favourable. The recombination rate is usually set at 0.7 
in the relevant literature. 

9.4.2 Mutation 

An operator (mutbin) is available for the mutation of binary variables. Only the mutation rate 
can be regulated for this operator, there can be no other possibilities for influencing binary 
variables. The mutation rate is usually set at (1/number of variables) and is only increased in 
exceptional cases. 

The high-level toolbox function for parameter optimization of binary variables is tbx3bin. 

9.5  Combinatorial Optimization 

The evolutionary algorithms presented so far are meant to be used for parameter optimization. 
Beside that, there is a further problem category of considerable size; that of combinatorial op-
timization. Problem categories that are known within combinational optimisation are travelling 
sales person TSP, quadratic assignment problem QAP, production scheduling (e.g. job shop 
scheduling JSS) and vehicle routing problem VRP. These problems are often called ordering or 
permutation problems. 

At this point, however, two restrictions must be placed. There exists an extremely large num-
ber of application fields for combinational optimization, all of which call for a slightly different 
procedure. Especially with regard to solving substantial problems special procedures and op-
erators  must be applied in order to achieve a result with justifiable effort. This cannot be cov-
ered comprehensively within this section. 

Some information and hints shall be provided here that have proved themselves within the 
scope of this work. These are able to show how the ‘new’ application of combinational optimi-
zation falls into line with the structure of evolutionary algorithms used so far and is corre-
spondingly filled with the specific operators. The statements from section 9.1, p.60, concerning 
the application and parameterization of the generally adjustable procedures and operators can 
be directly applied here. 
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9.5.1 Recombination 

Within the scope of the GEATbx two recombination operators for combinatorial problems 
have been used: partial matching crossover PMX (recpm) and generalized position recombina-
tion GPX (recgp). These have been designed especially for the handling of sequence / order-
ing / permutation problems. All of the operators ensure the validity of the individuals generated 
by recombination.  

The fundamental difference between the operators lies in the information they retain during 
recombination. Three properties are important for combinatorial optimization: the neighbour-
hood relation between the variables (relative relation), the absolute relation of the variables, 
and the absolute position of the variable. As regards the TSP the relative relation is crucial, the 
information on the absolute position is not. In the case of the QAP the absolute position of the 
variables is decisive but not the neighbourhood relation to other variables. As for the JSS again 
the absolute relation is important. The problem to be solved has to be examined with regard to 
which information should be retained or to which of the problem categories it belongs. 

GPX particularly retains the absolute relation of the variables, but also shows good behaviour 
in retaining the relative relation. PMX is best suited to retaining the relative relation of the 
variables when working with locally optimized individuals.  

By applying various strategies one can also quite simply determine which of these operators 
(or further recombination operators for combinatorial problems) is best suited for the solution 
of a problem. The subpopulations use one of the recombination operators each. The best sub-
population then provides an indication of which of the operators used should be applied for 
further optimization runs. Quite often this might be more than one operator. 

The recombination rate is mostly set to values of 1 or a little below 1. 

9.5.2 Mutation 

There are several operators available for mutation (swap mutation (mutswap), move mutation 
(mutmove), invert mutation (mutinvert), scramble mutation (mutrandperm)).These muta-
tion operators can be adjusted to mutation steps of varied sizes by specifying the mutation 
range and the mutation precision. This leads to a functionality in terms of large and small 
changes. The mutation range determines the maximum distance between the variables to be 
changed within the individual. The mutation precision serves to distribute the mutation steps in 
this area for a distribution between large and small mutation steps. 

The mutation rate  serves to control the number of changes  per individual. In most cases ap-
propriate behaviour should be obtained with a mutation rate of (1/number of variables), which 
corresponds to e.g. an exchange/swap of two variables or the move of one variable. 

The high-level toolbox function for combinatorial optimization is tbx3perm. 

9.6  Parameter Optimization of Variables of different Rep-
resentations 

I would like to end this chapter by looking at a problem which often occurs in practice and 
which the previous sections on parameter optimization in this chapter have in common. Up to 
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now it has been assumed that all the variables of a problem to be solved exist in the same rep-
resentation. This is, however, not always the case. When solving some problems in practice 
variables of differing types have to be dealt with simultaneously. This means that some of an 
individual’s variables are real and others are integer or binary. 

As previously mentioned, each variable representation has different operators which are best 
suited to it. In addition, certain singularities have to be taken into account for each data type. A 
way has to be found to optimise all the variables simultaneously despite these different re-
quirements. 

There are two procedures for the processing of problems with variables of different representa-
tions: 

• In the first case, the appropriate operators can be applied to the respective variables (as 
explained in the previous sections). If real and binary variables are present, two recombi-
nation and two mutation operators with the individuals’ respective variables are called 
within the evolutionary algorithm. This leads, besides an increased complexity within the 
evolutionary algorithm, above all to a significant increase in complexity within the 
parameterisation of the evolutionary algorithm which particularly detracts from clarity. In 
effect, this is a question of complex implementation and will not be looked at further 
here. 

• In the second case the different variable types are converted into one type with which the 
evolutionary algorithm works. On the face of it this seems to be a more cumbersome 
method. It has, however, proved itself, in practical application, to be much more easily 
manageable and simple to implement. 

If all the variable types are converted into one representation, the different combinations of 
types present must be considered and it must be decided into which representation they will be 
convertd. In principle, it is possible to convert all the variables into each representation. Some 
of the advantages and disadvantages, as well as what should be taken into consideration, will 
be explained in the following. 

9.6.1 Integer and Binary Variables 

First I would like to look at the combination of integer and binary variables as it is possible to 
do this very simply and without restrictions. An integer variable within the limits [0, 1] is 
equivalent to a binary variable. The evolutionary operators for integer variables work well with 
these binary variables. The settings for integer variables are used, see section 9.2, p.62. 

9.6.2 Use of Integer Representation 

If real and integer/binary variables are present, the integer representation can be used. In this 
case there are no restrictions for binary and integer variables. These can retain their original 
representation. 

For real variables, on the other hand, a conversion or adaptation must take place. If the defini-
tion range of the real variables is very broad and the limitation to integer values does not cause 
any problems, this is the best method to choose. If, however, a higher accuracy of the real 
variables’ values is necessary, then the real definition range must be discretized. These discrete 
values can then be mapped onto integer values which are used during optimization. 
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This conversion or adaptation can be achieved by means of a relatively simple transformation 
of the corresponding variables in the objective function of the problem. In doing so, one must 
determine with which accuracy each of the real variables is to be optimized. This accuracy can 
be determined by using a scaling factor for each variable. A scaling factor of 10 means that this 
variable is processed with a minimum resolution of 0.1 (1/10). Correspondingly, a scaling factor 
of 200 signifies a minimum resolution of 0.005 (1/200). 

Subsequently, this is used as a basis to increase the definition range of the variables (for opti-
mization) by this accuracy or scaling factor. The evolutionary algorithm and predetermined 
operators work with this definition range and integer variables. Before each evaluation of the 
objective function, the integer variables are converted with the determined scaling factor and 
are then available as real variables in the desired resolution. 

I would like to illustrate the procedure described using two examples. In the first, a real vari-
able is used with a definition range of [-1, +1]. An accuracy of 0.01 is desired for this variable. 
For this, the original limits of the definition range of this variable are multiplied by a scale fac-
tor of 1/0,01=100. During optimization this variable is treated as an integer within the limits 
[-100, +100]. Before the target function is evaluated this variable is divided by the scaling fac-
tor of 100. The real variable which is to be used is available again with the desired accuracy. 

In the second example we have 3 variables, the first and third as real variables, the second as an 
integer variable. The first variable should have a minimum resolution of 0.2, the third one of 
0.005. The scale factor for all 3 variables must therefore be determined at [5, 1, 200]. By mul-
tiplying by this scaling factor the definition range for these variables is increased (or maintained 
for the integer variable). Before the evaluation of the objective function, division by the scaling 
factors results in a conversion of the integer variable values into real variable values of the de-
sired resolution within the problem specific definition range. 

The application of this approach is very flexible. On the one hand, the desired resolution of the 
variables can be influenced exactly. On the other, all the deployment possibilities for the evolu-
tionary operators for integer variables continue to be available. 

The only disadvantage is that, in the case of the formerly real variables, the direct relationship 
between the variables’ values during optimization and the problem specific value is lost. The 
variable values from optimization first have to be converted with the scaling factor. 

This disadvantage can, however, be put up with and does not outweigh the good manageability 
of this method. When solving systems with variables of different representations, the use of 
integer variables for optimization has proved itself and is recommended here for application. 

For the combination of operators and their parameterization to evolutionary algorithms, the 
details given on parameter optimization of the corresponding representation in the previous 
sections, especially section 9.2, p.62, hold good. I shall, therefore, not go into it further at this 
point. 

9.6.3 Use of Binary Representation 

Besides a conversion of real variables into an integer representation, binary representation can 
also be used as the smallest common denominator. For this, all integer and real variables are 
transmuted into binary representation with which the evolutionary algorithm then works. This 
approach corresponds to classical genetic algorithms. 
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The desired resolution of each variable has to be predetermined for this conversion too. In the 
case of integer variables this occurs straightforward, an integer variable within the limits 
[10, 500] can be coded via log2(491) < 9 binary variables. In the case of real variables the data 
given above apply. One must, however, take into account that base 2 is being used. For a real 
variable, which is decoded with 10 binary variables, this means a resolution of around 0.001 
(1/210) with respect to the definition range (in the case of linear scaling). 

As pointed out in section 9.4, p.65, many users still work with this method. It has both histori-
cal importance and justification. It has been shown in many applications, however, that the use 
of evolutionary operators available for integer and real variables result in more effective evolu-
tionary algorithms. Nevertheless, the decoding of binary variables into integer (bin2int) and 
real variables (bin2real) is supported in the GEATbx. 

9.6.4 Use of real representation 

In principle, it is also possible to work with a real representation and to carry out a limitation 
of the variable values in the objective function (rounding off the variables to the next integer 
value). 

However, this can have the consequence that a mutation of originally binary or integer vari-
ables has no effect (due to the subsequent rounding off). This can be particularly extreme in the 
case of binary variables because only a change of, on average, a quarter of the definition range 
results in a change in the binary variable value. In the case of integer variables this problem 
becomes less serious, the broader the definition range of the corresponding variable is. 

For this reason, real representation should only be used in special cases or when combining 
integer values with a broad value range (difference between lower and upper limit is greater 
than 1000) and real variables. 

9.7  Summary 

In this chapter I have presented details on the combination and parameterization of powerful 
evolutionary algorithms. For this, a subdivision into frequently occurring problem classes was 
undertaken (parameter optimization of real, integer and binary variables as well as sequence or 
ordering optimization). Details were provided at the beginning of the explanations which can 
be applied similarly to most of the problem categories (fitness assignment, selection, applica-
tion of the regional population model with different strategies, competition). Thereafter, a 
compilation of the operators with robust parameters, which are specific to each problem class, 
were presented. 

There are several possible solutions to problems with variables of different representations. 
According to each type of variable the advantages and disadvantages of the conversion and 
application of the different representations were addressed. During application the conversion 
of real variables into integer representation and its use for the optimization has proved success-
ful and is thus recommended. 

The evolutionary algorithms presented in this chapter provide the basis for their application to 
systems of various problem classes. After the analysis of the system to be solved the user may 
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select the appropriate evolutionary algorithm. An adaptation is only necessary if there are 
problem specific requirements. 
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10  Reference 

The reference list contains all the references used during the creation of this report. To provide 
a better overview and orientation the entries are sorted according to the main topics covered in 
this documentation. 

Section 10.1, p.71 contains papers and books about Evolutionary Algorithms in general. Sec-
tion 10.2, p.82 collects publications about population models and parallel implementations of 
Evolutionary Algorithms. Section 10.3, p.84 presents papers on combinatorial optimization 
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